研究生: |
張祺博 Chang, Chi-Po |
---|---|
論文名稱: |
離子佈植對銻薄膜相變化行為之影響 Influence of Ion Implantation on Phase-Change Behaviors of Sb Films |
指導教授: |
梁正宏
Liang, Jenq-Horng 金重勳 Chin, Tsung-Shune |
口試委員: |
梁正宏
金重勳 謝宗雍 趙得勝 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 相變化記憶體 、離子佈植 、銻超薄膜 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用離子佈植的方式來探討相變化記憶體材料的改質行為,首先討論相變化材料Ge2Sb2Te5經由氮與氧離子分別佈植後,其相變行為將如何改變,接者探討銻超薄膜覆蓋各種不同的保護層後,其相變行為是否比Ge2Sb2Te5優秀,最後探討矽離子佈植於覆蓋各種不同保護層的銻超薄膜相變特性有何影響。
第一部分的研究為氮與氧離子分別佈植於Ge2Sb2Te5薄膜以改善其相變特性,佈植劑量為8×1015與3.2×1016 ions/cm2。低劑量氮離子佈植時,結晶溫度從158 ℃增加至170 ℃,結晶活化能從2.73 eV增加至3.33 eV,十年數據存留度從81 ℃增加至100 ℃,而高劑量氮離子佈植時,結晶溫度、結晶活化能、數據存留度分別為176 ℃、3.12 eV、102 ℃,氮離子佈植於Ge2Sb2Te5的改質效果比佈植氧離子好。
第二部分的研究為覆蓋各種不同保護層與不同銻膜厚(5 nm~15 nm)的超薄膜相變行為,並且研究矽離子佈植對其有何影響。覆蓋Si3N4的5 nm銻超薄膜其結晶溫度為191 ℃,結晶活化能為4.70 eV,數據存留度為135 ℃,比Ge2Sb2Te5的數據存留度高54 ℃。利用Zacharias公式將膜厚推測到接近1.7 nm時,其結晶溫度將會剛好等於熔點溫度,覆蓋Si3N4抑制銻超薄膜結晶的效果比覆蓋SiC與Al2O3的銻超薄膜佳,覆蓋Al2O3的銻超薄膜會因為與鋁和氧接觸而產生二元和三元氧化物,所以會導致其熱穩定性不佳。經過矽離子佈植後,只有覆蓋Si3N4的7nm銻超薄膜其熱穩定性增加,其餘的都會因離子佈植而破壞保護層抑制結晶化的效果,導致銻超薄膜熱穩定性降低,甚至在離子佈植後就變為結晶態。
This study investigates the ion-implantation doping behavior of phase change memory materials. First, we discuss the phase-change characteristics of the Ge2Sb2Te5 films subjected to N+ or O+-implantation. Secondly, we study the phase-change characteristics of the ultra thin Sb films enclosed by different capping layers and then compare with those of Ge2Sb2Te5 films. Finally, we study the phase-change characteristics Si+-implanted ultra thin Sb films enclose by different capping layers.
The first part studies the improvement of phase-change characteristics of Ge2Sb2Te5 films by N+ or O+ implantation, respectively. The implantation doses are 8×1015 and 3.2×1016 ions/cm2. When implantation dose is 8×1015 ions/cm2, the crystallization temperature(Tx) increases from 158 to 170 ℃, the activation energy of crystallization(Ea) increases from 2.73 to 3.33 eV, and the temperature of 10-year data retention(T10y) also increases from 81 to 100 ℃, respectively. When implantation dose is 3.2×1016 ions/cm2, the Tx, the Ea, and the T10y are 176 ℃, 3.12 eV, 102 ℃, respectively. The doping effect of N+-implanted films is better than that of O+-implanted films.
The second part of study is to investigate the phase-change behaviors of the ultra thin Sb films subjected to Si+ implantation. The Tx of the 5 nm thick Sb film capped with Si3N4 is 191 ℃, the Ea is 4.70 eV, and the T10y is 135 ℃. The T10y of the 5 nm thick Sb film is 54 ℃ higher than Ge2Sb2Te5 film. By using Zacharias’s equation, the Tx of 1.7 nm thick Sb film is equal to its melting temperature. The suppression of crystallization by Si3N4 capping layer is better than those by SiC and Al2O3 capping layers. The thermal stability of the Al2O3 capping layer degraded due to the formation of oxidative compound in Sb film. Si3N4 is the only capping layer that may increase the thermal stability of Sb film subjected to Si+ implantation. Since it may resist the degradation caused by the ion-implantation.
[1] S. Lai, T. Lowery, “OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications”, Electron Devices Meeting, (2001) 803.
[2] S.R. Ovshinsky, Phys. Rev. Lett., 21 (1968) 1450.
[3] S.R. Ovshinsky, “The ovshinsky switch”, Proceedings of the 5th Annual National Conference on Industrial Research Chicago, Illinois, U.S.A., (1969) 86.
[4] S. Raoux, “Phase change materials” Annu. Rev. Mater. Res., 39 (2009) 25.
[5] T. Zhang, Z. Song, B. Liu, S. Feng, “Investigation of environmental friendly Te-free SiSb material for applications of phase-change memory”, Semicond. Sci. Technol., 23 (2008) 055010.
[6] 蔡松雨,「相變化材料發展新趨勢」,工業材料雜誌,台灣,中華民國九十年,p.145
[7] 李博祥,「矽離子佈植技術對於製作相變化記憶體材料之應用研究」,國立清華大學工程與系統科學所,碩士論文,中華民國一百年
[8] M. Chen, K.A. Rubin, R.W. Barton, “Compound materials for reversible, phase-change optical data storage”, Appl. Phys. Lett., 49 (1986) 502.
[9] N. K. Abrikosov, G. T. Danilova-Dobryakora, Inorg. Mater., 1 (1965) 187
[10] B. Legendre, C. Hancheng, “Phase diagram of the ternary system Ge-Sb-Te. I. The subternary GeTe-Sb2Te3-Te”, Thermochim. Acta, 78 (1984) 141.
[11] S. Bordas, M.T. Clavaguera-Mova, Thermochim. Acta, 107 (1986) 239.
[12] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid phase transitions of GeTeSb2Te3 pseudobinary amorphous thin films for an optical disk memory”, J. Appl. Phys., 69 (1991) 2849.
[13] E.J. Evans, J.H. Helbers, S.R. Ovshinsky, J. Non-Cryst. Solids, 2 (1970) 334
[14] N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takao, “High speed overwritable phase change optical disk material”, Jpn. J. Appl. Phys., 26 (1987) 61.
[15] A.V. Kolobov, P. Fons, J. Tominaga, “Local structure of amorphous Ge–Sb–Te alloys: Ge umbrella flip vs. DFT simulations”, Phys. Status Solidi B, 246 (2009) 1826.
[16] M.H.R. Lankhorst, “Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials”, J. Non-Cryst. Solids, 297 (2002) 210.
[17] M. Okuda, H. Naito, T. Matsushita, “Discussion on the mechanism of reversible phase change optical recording”, Jpn. J. Appl. Phys., 31 (1992) 466.
[18] N. Shimidzu, T. Nagatsuka, Y. Magara, N. Ishii, N. Kinoshita, K. Sato, “Dynamic observation study of crystallization process in Sb-based phase-change materials”, Jpn. J. Appl. Phys., 46 (2007) L385.
[19] C.E. Wickersham, G. Bajor, J.E. Greene, “Impulse stimulated “explosive” crystallization of sputter deposited amorphous (In,Ga)Sb films”, Solid State Commun., 27 (1978) 17.
[20] 張志仲,「銻基相變化記憶材料之開發與探索」,國立清華大學材料科學工程所,博士論文,中華民國一百年
[21] P.K. Khulbe, T. Hurst, M. Horie, M. Mansuripur, “Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks”, Appl. Optics, 41 (2002) 6220.
[22] Y. Kageyama, H. Iwasaki, M. Harigaya, Y. Ide, “Compact disc erasable (CD-E) with Ag–In–Sb–Te phase-change recording material”, Jpn. J. Appl. Phys., 35 (1996) 500.
[23] M.H.R. Lankhorst, L.V. Pieterson, M.V. Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, “Prospects of doped Sb–Te phase-change materials for high-speed recording”, Jpn. J. Appl. Phys., 42 (2003) 863.
[24] L.V. Pieterson, M.V. Schijndel, J.C.N. Rijpers, M. Kaiser, “Te-free, Sb-based phase-change materials for high-speed rewritable optical recording”, Appl. Phys. Lett., 83 (2003) 1373.
[25] L.V. Pieterson, J.C.N. Rijpers, J. Hellmig, “Phase-change media for ultrahigh-speed digital versatile disc recording”, Jpn. J. Appl. Phys., 43 (2003) 4974.
[26] M. Libera, M Chen, “Multilayered thin-film materials for phase-change erasable storage” MRS. Bulletin, 15 (1990) 40.
[27] G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy, “Phase change memory technology”, J. Vac. Sci. Technol., B, 28 (2010) 223.
[28] K.Wang, C. Steimer, D.Wamwangi, S. Ziegler, M. Wuttig, “Effect of indium doping on Ge2Sb2Te5 thin films for phase-change optical storage”, Appl. Phys. A: Mater. Sci. Process., 80 (2005) 1611.
[29] S.H. Lee, D.K. Ko, Y. Jung, R. Agarwal, “Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires”, Appl. Phys. Lett., 89 (2006) 223116.
[30] 洪敬毅,「非揮發記憶體用銻基相變化材料開發」,國立清華大學材料科學工程研究所,碩士論文,中華民國九十七年
[31] Y. Lu, S. Song, Z. Song, F. Rao, L. Wu, “Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications”, Appl. Phys. Lett., 100 (2012) 193114.
[32] M. Zhu, L. Wu, F. Rao, Z. Song, X. Li, C. Peng, X. Zhou, K. Ren, D. Yao, S. Feng, “N-doped Sb2Te phase change materials for higher data retention”, J. Alloys Compd., 509 (2011) 10105.
[33] K.Ren, F. Rao, Z.T. Song, L.C. Wu, X.L. Zhon, M.J. Xia, B. Liu, S.L. Feng, W. Xi, D.N. Yao, B.M. Chen, “Si3.5Sb2Te3 phase change material for low-power phase change memory application”, Chin. Phys. Lett., 27 (2010) 108101.
[34] M. Wuttig, N. Yamada, “Phase-change materials for rewriteable data storage”, Nat. Mater., 6 (2007) 824.
[35] D. Adler, M. S. Shur, M. Silver, S. R. Ovshinsky, “Threshold switching in chalcogenideglass thin films”, J. Appl. Phys., 51 (1980) 3289.
[36] S. R. Ovshinsky, H. Fritzsche, “Amorphous semiconductors for switching, memory, and imaging applications”, IEEE transactions on electron devices, 20 (1973) 91.
[37] M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips”, Nat. Mater., 4 (2005) 347.
[38] Y.H Ha, J.H. Yi, H. Horii J.H. Park, S.H. Joo, S.O. Park, U.I. Chung, J.T. Moon, “An edge contact type cell for phase change RAM featuring very low power consumption”, VLSI Technology, Kyungki, South Korea, (2003) 175
[39] A.L. Lacaita, “Phase change memories: State-of-the-art, challenges and perspectives”, Solid-State Electron., 50 (2006) 24.
[40] S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.O. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U-In. Chung, J.T. Moon, B. I. Ryu, “Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb”, VLSI Technology, South Korea, (2005) 96.
[41] Y.S. Park, K.J. Choi, N.Y. Lee, S.M. Yoon, S.Y. Lee, S.O. Ryu, B.G. Yu, “Writing current reduction in phase change memory device with u-shaped heater (PCM-U) ”, Jpn. J. Appl. Phys., 45 (2006) L516.
[42] C.W. Jeong, S.J. Ahn, Y.N. Hwang, Y.J. Song, J.H. Oh, S.Y. Lee, S.H. Lee, K.C. Ryoo, J.H. Park, J.H. Park, J.M. Shin, F.Yeung,W.C. Jeong, J.I. Kim, G.H. Koh, G.T. Jeong, H.S. Jeong, K. Kim, “Highly reliable ring-type contact for high-density phase change memory”, Jpn. J. Appl. Phys., 45 (2006) 3233.
[43] Y.J. Song, J.H. Park, S.Y. Lee, J.H. Park, Y.N. Hwang, S.H. Lee, K.C. Ryoo, S.J. Ahn, C.W. Jeong, J.M. Shin, W.C. Jeong, K.H. Koh, G.T. Jeong, H.S. Jeong, K.N. Kim, “Advanced ring type contact technology for high density phase change memory”, Solid-State Device Research Conference, Europe, (2005) 513.
[44] S.J. Ahn,Y.J. Song, C.W. Jeong, J.M. Shin,Y. Fai,Y.N. Hwang, S.H. Lee,K.C. Ryoo, S.Y. Lee, J.H.Park, H. Horii, Y.H. Ha, J.H. Yi, B.J. Kuh, G.H. Koh, G.T. Jeong, H.S. Jeong, K. Kim, B.I. Ryu, “Highly manufacturable high density phase change memory of 64Mb and Beyond”, Electron Devices Meeting, Kyunggi-Do, South Korea (2004) 907.
[45] http://www.eetimes.com/electronics-news/4230958/ISSCC--Samsung-preps-8-Gbit-phase-change-memory
[46] http://en.wikipedia.org/wiki/Phase-change_memory?oldid=0
[47] B. Liu, T. Zhang, J.L. Xia, Z.T. Song, S.L. Feng, B.M. Chen, “Nitrogen-implanted Ge2Sb2Te5 film used as multilevel storage media for phase change random access memory”, Semicond. Sci. Technol., 19 (2004) L61.
[48] Y.K. Kim, J.H. Baeck, M.H. Cho, E.J. Jeong, D.H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films”, J. Appl. Phys., 100 (2006) 083502.
[49] S. Privitera, E. Rimini, R. Zonca, “Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements”, Appl. Phys. Lett., 85 (2004) 15.
[50] S. Privitera, E. Rimini, C. Bongiorno, A. Pirovano, R. Bez, “Effects of dopants on the amorphous-to-fcc transition in Ge2Sb2Te5 thin films”, Nucl. Instrum. Methods Phys. Res., Sect. B 257 (2007) 352.
[51] L.W.W. Fang, R. Zhao, M. Li, K.G. Lim, L. Shi, T.C. Chong, Y.C. Yeo, “Dependence of the properties of phase change random access memory on nitrogen doping concentration in Ge2Sb2Te5”, J. Appl. Phys., 107 (2010) 104506.
[52] B. Liu, Z.T. Song, T. Zhang, S.L. Feng, B.M. Chen, “Effect of O-implantation on the structure and resistance of Ge2Sb2Te5 film”, Appl. Surf. Sci. 242 (2005) 62.
[53] M.H. Jang, S.J. Park, D.H. Lim, M.H. Cho, K.H. Do, D.H. Ko, H.C. Sohn, “Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films”, Appl. Phys. Lett., 95 (2009) 012102.
[54] 王世昌,「不同佈植與退火參數對於矽化硼分子離子佈植技術的特性影響研究」,國立清華大學工程與系統科學所,碩士論文,中華民國九十五年
[55] A. Uhlir, “The potentials of infinite systems of sources and numerical solutions of problems in semiconductor engineering”, The Bell System Technical Journal, 34 (1955) 105.
[56] F. M. Smits, “Measurement of sheet resistivities with the four-point probe”, The Bell System Technical Journal, 37 (1958) 711
[57] http://mse.nthu.edu.tw/~jch/surface/report/873458/figure/1.html
[58] W.A. Johnson, K.F. Mehl, “Phase transformation theory and research”, Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Incorporated, 135 (1981) 315.
[59] M. Avrami, “Kinetics of phase change I - general theory”, J. Chem. Phys., 7 (1939) 1103.
[60] M. Avrami, “Kinetics of phase change. II: transformation-time relations for random distribution of nuclei”, J. Chem. Phys., 8 (1940) 212.
[61] M. Avrami, “Kinetics of phase change. III: granulation, phase change and microstructure”, J. Chem. Phys., 9 (1941) 177.
[62] D.W. Henderson, “Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids”, J. Non-Cryst. Solids, 30 (1979) 301.
[63] J.W. Christian, The Theory of Transformations in Metals and Alloys. 2nded., Pergamon Press, New York, (1975) 15.
[64] M. Zacharias, J. Blasing, and P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattices”, Appl. Phys. Lett., 74 (1999) 2614.
[65] G.V.M. Williams, A. Bittar, H.J. Trodahl, “Crystallization and diffusion in progressively annealed a Ge/SiOx superlattices”, J. Appl. Phys., 67 (1990) 1874.
[66] M. Zacharias, P. Streitenberger, “Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces”, Phys. Rev. B: Condens. Matter Mater. Phys., 62 (2000) 8391.
[67] I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements”, J. Appl. Phys., 87 (2000) 4130.
[68] X. Wei, L. Shi, T.C. Chong, R. Zhao, H.K. Lee, “Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices”, Jpn. J. Appl. Phys., 46 (2007) 2211.
[69] U. Russo, D. Ielmini, A.L. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation”, IEEE transactions on electron devices, 54 (2007) 2769.
[70] C.A. Chang, H. Takaoka, L.L. Chang, L. Esaki, “Molecular beam epitaxy of AlSb”, Appl. Phys. Lett., 40 (1982) 983.
[71] F.W.O.D. Silva, C. Raisin, M. Nouaoura, L. Lassabatere, “Auger and electron energy loss spectroscopies study of the oxidation of AlSb(001) thin films grown by molecular beam epitaxy”, Thin Solid Films, 200 (1991) 33.
[72] J. Nakata, T. Shibata, Y. Nanishi, M. Fujimoto, “Suppression of AlSb oxidation with hydrocarbon passivation layer induced by MeVHe+ irradiation”, J. Appl. Phys., 76 (1994) 2078.
[73] T. Shibata, J. Nakata, Y. Nanishi, M. Fujimoto, “A rutherford backscattering spectroscopic study of the aluminum antimonide oxidation process in air”, Jpn. J. Appl. Phys., 33 (1994) 1767.