研究生: |
張怡雯 Chang, Yi-Wen |
---|---|
論文名稱: |
鑑別在上皮-間質轉化期間 β-catenin 之相異目標並藉此定義癌幹細胞族群與預測腫瘤復發可能性 Identify the diverse targets of β-catenin during the epithelial-mesenchymal transition for defining the cancer stem cell population and predicting tumor relapse |
指導教授: |
李佳霖
Lee, Jia-Lin |
口試委員: |
阮雪芬
Juan, Hsueh-Fen 李岳倫 Lee, Yueh-Luen 王翊青 Wang, I-Ching 張壯榮 Chang, Chuang-Rung |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 135 |
中文關鍵詞: | 癌症幹細胞 、Wnt 訊息傳遞路徑 、上皮-間質轉化 |
外文關鍵詞: | cancer stem cell, Wnt signaling pathway, epithelial-mesenchymal transition |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Wnt 訊息傳遞路徑與上皮-間質轉化 (EMT) 皆會促使癌幹細胞的重新編程並維持癌幹細胞的特性。然而,對於 Wnt 訊息傳遞路徑與上皮-間質轉化此兩機制對癌幹細胞的影響尚未完全清楚。
高通量染色質免疫沉澱定序 (ChIP-Seq) 指出上皮-間質轉化誘發上皮型態細胞中的 β-catenin/E-cadherin/Sox15 複合體轉換成間質型態細胞中的 β-catenin/Twist1/TCF4 複合體。免疫共沉澱與染色質免疫沉澱實驗更進一步指出:上皮型態細胞中的 β-catenin/E-cadherin/Sox15 複合體可以與 CASP3 基因的近端啟動子區域結合,進而促進 Caspase3 蛋白的表現量;反之, 間質型態細胞中的 β-catenin/Twist1/TCF4 複合體則是活化癌幹細胞相關基因- ABCG2。
接著,我們更詳細的說明:β-catenin/E-cadherin/Sox15複合體中的 E-cadherin 藉由干擾 β-catenin 與 TCF4 的相互結合以降低 β-catenin/TCF4 的轉錄活性,使得細胞核內的 E-cadherin 在 Wnt/β-catenin 訊息傳遞路徑促進癌幹細胞特性的過程中扮演負調控的角色。
在上皮-間質轉化期間,Twist1 藉由提高 β-catenin 的穩定性和TCF4 的入核數量以增強 β-catenin/TCF4 的轉錄活性,進而促進癌幹細胞特性。然而,此正向調控作用卻會因 Caspase3 引起的 Twist1裂解而抵銷。
在臨床應用上,我們利用本論文所建立分子機制中的參與蛋白,為癌幹細胞定義了兩組多基因型標誌 (nuclear E-cadherinLow/nuclear β-cateninHigh/CD133High) (nuclear β-cateninHigh/ nuclear Twist1High/E-cadherinLow/Sox15Low/CD133High),期望此多基因型癌幹細胞標誌可以為人類肺癌提供一個有用的癌症癒後指標。
Wnt signaling contributes to the reprogramming and maintenance of cancer stem cell (CSC) states that are also activated by epithelial–mesenchymal transition (EMT). However, the mechanistic relationship between EMT and the Wnt pathway in CSC is not entirely clear.
Chromatin immunoprecipitation with highthroughput sequencing (ChIP-seq) indicates that EMT induces a switch from the β-catenin/E-cadherin/Sox15 complex to the β-catenin/Twist1/TCF4 complex. Further tandem coimmunoprecipitation and re-ChIP experiments reveal that the β-catenin/E-cadherin/Sox15 complex in epithelial-type cells binds to the proximal promoter region of CASP3, whereas β-catenin/Twist1/TCF4 complex in mesenchymal-type cells targets to CSC-related gene, ABCG2. In detail, we demonstrate that nuclear E-cadherin, a component of the inhibitory complex, acts as a negative regulator in Wnt/β-catenin-elicited promotion of the CSC phenotype. E-cadherin reduces β-catenin/TCF4 transcriptional activity through abolishing the β-catenin/TCF4 interaction.
During EMT, accumulating Twist1 enhances the transcriptional activity of the β-catenin/TCF4 complex by increasing the stabilization of β-catenin and nuclear translocation of TCF4. Nevertheless, its potent enhancer in the promotion of the CSC phenotype is counteracted by Caspase3-mediated Twist1 cleavage.
In terms of clinical application, our definition of muti-gene CSC signatures (nuclear E-cadherinLow/nuclear β-cateninHigh/CD133High) (nuclear β-cateninHigh/ nuclear Twist1High/E-cadherinLow/Sox15Low/CD133High) may provide a useful prognostic marker for human lung cancer.
1. Morrison SJ, Spradling AC: Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell 2008, 132(4):598-611.
2. Pattabiraman DR, Weinberg RA: Tackling the cancer stem cells [mdash] what challenges do they pose? Nat Rev Drug Discov 2014, 13(7):497-512.
3. Das S, Srikanth M, Kessler JA: Cancer stem cells and glioma. Nat Clin Pract Neuro 2008, 4(8):427-435.
4. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367(6464):645-648.
5. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al: ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell 2007, 1(5):555-567.
6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences 2003, 100(7):3983-3988.
7. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a Cancer Stem Cell in Human Brain Tumors. Cancer Research 2003, 63(18):5821-5828.
8. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer research 2005, 65(23):10946-10951.
9. Bapat SA, Mali AM, Koppikar CB, Kurrey NK: Stem and Progenitor-Like Cells Contribute to the Aggressive Behavior of Human Epithelial Ovarian Cancer. Cancer Research 2005, 65(8):3025-3029.
10. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445(7123):111-115.
11. Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM et al: Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences 2007, 104(24):10158-10163.
12. O/'Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445(7123):106-110.
13. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PWK, Lam CT, Poon RTP, Fan ST: Significance of CD90+ Cancer Stem Cells in Human Liver Cancer. Cancer Cell 2008, 13(2):153-166.
14. Chen XF, Zhang HT, Qi QY, Sun MM, Tao LY: Expression of E-cadherin and nm23 is associated with the clinicopathological factors of human non-small cell lung cancer in China. Lung Cancer 2005, 48(1):69-76.
15. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C: Distinct Populations of Cancer Stem Cells Determine Tumor Growth and Metastatic Activity in Human Pancreatic Cancer. Cell Stem Cell 2007, 1(3):313-323.
16. Clevers H: The cancer stem cell: premises, promises and challenges. Nature medicine 2011:313-319.
17. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death & Differentiation 2008, 15(3):504-514.
18. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer research 2007, 67(3):1030-1037.
19. Zhang S, Balch C, Chan MW, Lai H-C, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer research 2008, 68(11):4311-4320.
20. De Craene B, Van Roy F, Berx G: Unraveling signalling cascades for the Snail family of transcription factors. Cellular signalling 2005, 17(5):535-547.
21. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL: Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences 2000, 97(26):14720-14725.
22. Lee A, Kessler JD, Read T-A, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ: Isolation of neural stem cells from the postnatal cerebellum. Nature neuroscience 2005, 8(6):723-729.
23. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP: CD133+ and CD133− glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer research 2007, 67(9):4010-4015.
24. Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer 2008, 8(10):755-768.
25. Black W, Vasiliou V: The aldehyde dehydrogenase gene superfamily resource center. Human genomics 2009, 4(2):136.
26. Szakács G, Annereau J-P, Lababidi S, Shankavaram U, Arciello A, Bussey KJ, Reinhold W, Guo Y, Kruh GD, Reimers M: Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer cell 2004, 6(2):129-137.
27. Robey RW, Polgar O, Deeken J, To KW, Bates SE: ABCG2: determining its relevance in clinical drug resistance. Cancer and Metastasis Reviews 2007, 26(1):39-57.
28. Carpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, Scott EW, Huang EH: Aldehyde dehydrogenase–expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer research 2009, 69(20):8208-8215.
29. Cheung A, Wan T, Leung J, Chan L, Huang H, Kwong Y, Liang R, Leung A: Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 2007, 21(7):1423-1430.
30. Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA: Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular Cancer Research 2009, 7(3):330-338.
31. Ma S, Chan KW, Lee TK-W, Tang KH, Wo JY-H, Zheng B-J, Guan X-Y: Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular Cancer Research 2008, 6(7):1146-1153.
32. Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. science 1992, 255(5052):1707-1710.
33. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. nature 2004, 432(7015):396-401.
34. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer research 2005, 65(13):5506-5511.
35. Pastrana E, Silva-Vargas V, Doetsch F: Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell stem cell 2011, 8(5):486-498.
36. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J-M, Alvarez-Buylla A: EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002, 36(6):1021-1034.
37. Marshall GP, Reynolds BA, Laywell ED: Using the neurosphere assay to quantify neural stem cells in vivo. Current pharmaceutical biotechnology 2007, 8(3):141-145.
38. Golebiewska A, Brons NH, Bjerkvig R, Niclou SP: Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell stem cell 2011, 8(2):136-147.
39. Zhou S, Schuetz JD, Bunting KD, Colapietro A-M, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature medicine 2001, 7(9):1028-1034.
40. Dean M, Hamon Y, Chimini G: The human ATP-binding cassette (ABC) transporter superfamily. Journal of lipid research 2001, 42(7):1007-1017.
41. Arndt-Jovin DJ, Jovin TM: Analysis and sorting of living cells according to deoxyribonucleic acid content. Journal of Histochemistry & Cytochemistry 1977, 25(7):585-589.
42. Lalande ME, Miller RG: Fluorescence flow analysis of lymphocyte activation using Hoechst 33342 dye. Journal of Histochemistry & Cytochemistry 1979, 27(1):394-397.
43. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of experimental medicine 1996, 183(4):1797-1806.
44. Kondo T, Setoguchi T, Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(3):781-786.
45. Li R, Wu X, Wei H, Tian S: Characterization of side population cells isolated from the gastric cancer cell line SGC-7901. Oncology letters 2013, 5(3):877-883.
46. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, MacLaughlin DT, Donahoe PK: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences 2006, 103(30):11154-11159.
47. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG: Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer research 2005, 65(14):6207-6219.
48. Harris MA, Yang H, Low BE, Mukherje J, Guha A, Bronson RT, Shultz LD, Israel MA, Yun K: Cancer stem cells are enriched in the side population cells in a mouse model of glioma. Cancer research 2008, 68(24):10051-10059.
49. Ho MM, Ng AV, Lam S, Hung JY: Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer research 2007, 67(10):4827-4833.
50. Wu C, Wei Q, Utomo V, Nadesan P, Whetstone H, Kandel R, Wunder JS, Alman BA: Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer research 2007, 67(17):8216-8222.
51. Thiery JP, Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006, 7(2):131-142.
52. Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139(5):871-890.
53. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA: Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. The Journal of clinical investigation 2009, 119(6):1438-1449.
54. Wan L, Pantel K, Kang Y: Tumor metastasis: moving new biological insights into the clinic. Nature medicine 2013, 19(11):1450-1464.
55. Craene BD, Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013, 13(2):97-110.
56. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, de Herreros AG: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature cell biology 2000, 2(2):84-89.
57. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature cell biology 2000, 2(2):76-83.
58. Hajra KM, Chen DY, Fearon ER: The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer research 2002, 62(6):1613-1618.
59. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, Van Roy F: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular cell 2001, 7(6):1267-1278.
60. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005, 24(14):2375-2385.
61. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004, 117(7):927-939.
62. De Craene B, Gilbert B, Stove C, Bruyneel E, Van Roy F, Berx G: The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer research 2005, 65(14):6237-6244.
63. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G: SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic acids research 2005, 33(20):6566-6578.
64. Brabletz T: To differentiate or not—routes towards metastasis. Nature Reviews Cancer 2012, 12(6):425-436.
65. Scheel C, Weinberg RA: Cancer stem cells and epithelial–mesenchymal transition: concepts and molecular links. In: Seminars in cancer biology: 2012. Elsevier: 396-403.
66. Floor S, van Staveren WCG, Larsimont D, Dumont JE, Maenhaut C: Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations. Oncogene 2011, 17:4609-4621.
67. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al: The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 2008, 133(4):704-715.
68. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133(4):704-715.
69. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY, Tzeng CH, Tai SK et al: Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010, 12(10):982-992.
70. Blanpain C, Horsley V, Fuchs E: Epithelial stem cells: turning over new leaves. Cell 2007, 128(3):445-458.
71. van der Flier LG, Clevers H: Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009, 71:241-260.
72. Clevers H: Wnt/β-Catenin Signaling in Development and Disease. Cell 2006, 127(3):469-480.
73. Schuijers J, Clevers H: Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. The EMBO journal 2012, 31(12):2685-2696.
74. Alison MR, Islam S: Attributes of adult stem cells. J Pathol 2009, 217(2):144-160.
75. Polakis P: Wnt signaling and cancer. Genes Dev 2000, 14(15):1837-1851.
76. Polakis P: Drugging Wnt signalling in cancer. The EMBO journal 2012, 31(12):2737-2746.
77. Behrens J, Jerchow B-A, Würtele M, Grimm J, Asbrand C, Wirtz R, Kühl M, Wedlich D, Birchmeier W: Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 1998, 280(5363):596-599.
78. Karim RZ, Tse GM, Putti TC, Scolyer RA, Lee CS: The significance of the Wnt pathway in the pathology of human cancers. Pathology 2004, 36(2):120-128.
79. MacDonald BT, Tamai K, He X: Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Developmental Cell 2009, 17(1):9-26.
80. Reya T, Clevers H: Wnt signalling in stem cells and cancer Nature review 2005, 434:843-850.
81. Reya T, Clevers H: Wnt signalling in stem cells and cancer. Nature 2005, 434(7035):843-850.
82. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H et al: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010, 12(5):468-476.
83. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W et al: Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 2008, 452(7187):650-653.
84. Zeng YA, Nusse R: Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 2010, 6(6):568-577.
85. Bisson I, Prowse DM: WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 2009, 19(6):683-697.
86. Stewart DJ: Wnt signaling pathway in non-small cell lung cancer. Journal of the National Cancer Institute 2014, 106(1):djt356.
87. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL et al: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011, 145(6):926-940.
88. Li J, Zhou BP: Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC cancer 2011, 11:49.
89. Junghans D, Haas IG, Kemler R: Mammalian cadherins and protocadherins: about cell death, synapses and processing. Curr Opin Cell Biol 2005, 17(5):446-452.
90. Cowin P, Rowlands TM, Hatsell SJ: Cadherins and catenins in breast cancer. Curr Opin Cell Biol 2005, 17(5):499-508.
91. Li J, Zhou BP: Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer 2011, 11(1):49.
92. Becker KF, Atkinson MJ, Reich U, Huang HH, Nekarda H, Siewert JR, Hofler H: Exon skipping in the E-cadherin gene transcript in metastatic human gastric carcinomas. Hum Mol Genet 1993, 2(6):803-804.
93. Strathdee G: Epigenetic versus genetic alterations in the inactivation of E-cadherin. Seminars in cancer biology 2002, 12(5):373-379.
94. Jiang W, Hiscox S: beta-catenin-cell adhesion and beyond (review). International journal of oncology 1997, 11(3):635-641.
95. Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W: Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 2002, 4(3):222-231.
96. Shen Y, Hirsch DS, Sasiela CA, Wu WJ: Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 2008, 283(8):5127-5137.
97. Richards FM, McKee SA, Rajpar MH, Cole TR, Evans DG, Jankowski JA, McKeown C, Sanders DS, Maher ER: Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Hum Mol Genet 1999, 8(4):607-610.
98. Efstathiou JA, Liu D, Wheeler JM, Kim HC, Beck NE, Ilyas M, Karayiannakis AJ, Mortensen NJ, Kmiot W, Playford RJ et al: Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells. Proc Natl Acad Sci U S A 1999, 96(5):2316-2321.
99. Han AC, Soler AP, Tang CK, Knudsen KA, Salazar H: Nuclear localization of E-cadherin expression in Merkel cell carcinoma. Archives of pathology & laboratory medicine 2000, 124(8):1147-1151.
100. Moon KC, Cho SY, Lee HS, Jeon YK, Chung JH, Jung KC, Chung DH: Distinct expression patterns of E-cadherin and beta-catenin in signet ring cell carcinoma components of primary pulmonary adenocarcinoma. Archives of pathology & laboratory medicine 2006, 130(9):1320-1325.
101. Serra S, Salahshor S, Fagih M, Niakosari F, Radhi JM, Chetty R: Nuclear expression of E-cadherin in solid pseudopapillary tumors of the pancreas. JOP : Journal of the pancreas 2007, 8(3):296-303.
102. den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS: Cadherin Adhesion Receptors Orient the Mitotic Spindle during Symmetric Cell Division in Mammalian Epithelia. Molecular Biology of the Cell 2009, 20(16):3740-3750.
103. Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC, Yu MH, Liu HS, Chu DW, Lin YW: SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol 2009, 112(3):646-653.
104. Shiota M, Izumi H, Tanimoto A, Takahashi M, Miyamoto N, Kashiwagi E, Kidani A, Hirano G, Masubuchi D, Fukunaka Y et al: Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth. Cancer Res 2009, 69(7):3148-3156.
105. Demontis S, Rigo C, Piccinin S, Mizzau M, Sonego M, Fabris M, Brancolini C, Maestro R: Twist is substrate for caspase cleavage and proteasome-mediated degradation. Cell Death Differ 2006, 13(2):335-345.
106. Lee JL, Chang CJ, Wu SY, Sargan DR, Lin CT: Secreted frizzled-related protein 2 (SFRP2) is highly expressed in canine mammary gland tumors but not in normal mammary glands. Breast Cancer Res Treat 2004, 84(2):139-149.
107. Su YJ, Lai HM, Chang YW, Chen GY, Lee JL: Direct reprogramming of stem cell properties in colon cancer cells by CD44. The EMBO journal 2011, 30(15):3186-3199.
108. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 2009, 25(14):1754-1760.
109. Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
110. Machanick P, Bailey TL: MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics (Oxford, England) 2011, 27(12):1696-1697.
111. Bardet AF, He Q, Zeitlinger J, Stark A: A computational pipeline for comparative ChIP-seq analyses. Nature protocols 2012, 7(1):45-61.
112. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A: JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic acids research 2010, 38(Database issue):D105-110.
113. Robasky K, Bulyk ML: UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein-DNA interactions. Nucleic acids research 2011, 39(Database issue):D124-128.
114. Lee JL, Wang MJ, Chen JY: Acetylation and activation of STAT3 mediated by nuclear translocation of CD44. The Journal of cell biology 2009, 185(6):949-957.
115. Lee JL, Lin CT, Chueh LL, Chang CJ: Autocrine/paracrine secreted Frizzled-related protein 2 induces cellular resistance to apoptosis: a possible mechanism of mammary tumorigenesis. J Biol Chem 2004, 279(15):14602-14609.
116. Miettinen PJ, Ebner R, Lopez AR, Derynck R: TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. The Journal of cell biology 1994, 127(6 Pt 2):2021-2036.
117. Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D, Vadgama JV: Expression of Wnt3 activates Wnt/beta-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Molecular cancer research : MCR 2012, 10(12):1597-1606.
118. Qi L, Sun B, Liu Z, Cheng R, Li Y, Zhao X: Wnt3a expression is associated with epithelial-mesenchymal transition and promotes colon cancer progression. Journal of experimental & clinical cancer research : CR 2014, 33(1):107.
119. Bo H, Zhang S, Gao L, Chen Y, Zhang J, Chang X, Zhu M: Upregulation of Wnt5a promotes epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells. BMC cancer 2013, 13:496.
120. Kanzawa M, Semba S, Hara S, Itoh T, Yokozaki H: WNT5A is a key regulator of the epithelial-mesenchymal transition and cancer stem cell properties in human gastric carcinoma cells. Pathobiology : journal of immunopathology, molecular and cellular biology 2013, 80(5):235-244.
121. Theriault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW: BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 2007, 28(6):1153-1162.
122. Hamada S, Satoh K, Hirota M, Kimura K, Kanno A, Masamune A, Shimosegawa T: Bone morphogenetic protein 4 induces epithelial-mesenchymal transition through MSX2 induction on pancreatic cancer cell line. Journal of cellular physiology 2007, 213(3):768-774.
123. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X: Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002, 108(6):837-847.
124. Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer 2005, 5(4):275-284.
125. Graham TA, Weaver C, Mao F, Kimelman D, Xu W: Crystal structure of a beta-catenin/Tcf complex. Cell 2000, 103(6):885-896.
126. Correa S, Binato R, Du Rocher B, Castelo-Branco MT, Pizzatti L, Abdelhay E: Wnt/beta-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC cancer 2012, 12:303.
127. Chikazawa N, Tanaka H, Tasaka T, Nakamura M, Tanaka M, Onishi H, Katano M: Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Res 2010, 30(6):2041-2048.
128. van de Wetering M, Oosterwegel M, Dooijes D, Clevers H: Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. The EMBO journal 1991, 10(1):123-132.
129. Nelson WJ: Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochemical Society Transactions 2008, 36(Pt 2):149-155.
130. Huber AH, Weis WI: The Structure of the β-Catenin/E-Cadherin Complex and the Molecular Basis of Diverse Ligand Recognition by β-Catenin. Cell 2001, 105(3):391-402.
131. Camp RL, Rimm EB, Rimm DL: Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 1999, 86(11):2259-2265.
132. Lee J-L, Chang C-J, Wu S-Y, Sargan D, Lin C-T: Secreted Frizzled-related Protein 2 (SFRP2) is Highly Expressed in Canine Mammary Gland Tumors but not in Normal Mammary Glands. Breast Cancer Res Treat 2004, 84(2):139-149.
133. Camp RL, Rimm EB, Rimm DL: Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 1999, 86(11):2259-2265.
134. Pirozzi G, Tirino V, Camerlingo R, Franco R, La Rocca A, Liguori E, Martucci N, Paino F, Normanno N, Rocco G: Epithelial to mesenchymal transition by TGFbeta-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS One 2011, 6(6):e21548.
135. Wang S, Jones KA: CK2 controls the recruitment of Wnt regulators to target genes in vivo. Current biology : CB 2006, 16(22):2239-2244.
136. Sierra J, Yoshida T, Joazeiro CA, Jones KA: The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 2006, 20(5):586-600.
137. Daniels DL, Weis WI: ICAT inhibits beta-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol Cell 2002, 10(3):573-584.
138. Schuijers J, Mokry M, Hatzis P, Cuppen E, Clevers H: Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. The EMBO journal 2014, 33(2):146-156.
139. Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M: Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999, 274(51):36734-36740.
140. Nelson WJ, Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004, 303(5663):1483-1487.
141. Coluccia AM, Benati D, Dekhil H, De Filippo A, Lan C, Gambacorti-Passerini C: SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signaling. Cancer Res 2006, 66(4):2279-2286.
142. Yokoyama N, Malbon CC: Dishevelled-2 docks and activates Src in a Wnt-dependent manner. J Cell Sci 2009, 122(Pt 24):4439-4451.
143. Chen Q, Su Y, Wesslowski J, Hagemann AI, Ramialison M, Wittbrodt J, Scholpp S, Davidson G: Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/beta-catenin signalling. EMBO reports 2014, 15(12):1254-1267.
144. Wu D, Pan W: GSK3: a multifaceted kinase in Wnt signaling. Trends in biochemical sciences 2010, 35(3):161-168.
145. Liu L, Zhu XD, Wang WQ, Shen Y, Qin Y, Ren ZG, Sun HC, Tang ZY: Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clin Cancer Res 2010, 16(10):2740-2750.
146. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63(18):5821-5828.
147. Kuphal S, Poser I, Jobin C, Hellerbrand C, Bosserhoff AK: Loss of E-cadherin leads to upregulation of NFkappaB activity in malignant melanoma. Oncogene 2004, 23(52):8509-8519.
148. Herzig M, Savarese F, Novatchkova M, Semb H, Christofori G: Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene 2007, 26(16):2290-2298.
149. Noordermeer J, Klingensmith J, Perrimon N, Nusse R: dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 1994, 367(6458):80-83.
150. Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL, 3rd, Lee JJ, Tilghman SM, Gumbiner BM, Costantini F: The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997, 90(1):181-192.
151. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M et al: Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991, 66(3):589-600.
152. He X, Saint-Jeannet JP, Woodgett JR, Varmus HE, Dawid IB: Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 1995, 374(6523):617-622.
153. Kimelman D, Xu W: beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 2006, 25(57):7482-7491.
154. Spiegelman VS, Slaga TJ, Pagano M, Minamoto T, Ronai Z, Fuchs SY: Wnt/beta-catenin signaling induces the expression and activity of betaTrCP ubiquitin ligase receptor. Mol Cell 2000, 5(5):877-882.
155. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R et al: The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Current biology : CB 1999, 9(4):207-210.
156. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H: XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996, 86(3):391-399.
157. Morin PJ: beta-catenin signaling and cancer. BioEssays : news and reviews in molecular, cellular and developmental biology 1999, 21(12):1021-1030.
158. Seidensticker MJ, Behrens J: Biochemical interactions in the wnt pathway. Biochimica et biophysica acta 2000, 1495(2):168-182.
159. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T et al: Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 2012, 149(6):1245-1256.
160. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW: Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 1997, 272(40):24735-24738.
161. Huang P, Senga T, Hamaguchi M: A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene 2007, 26(30):4357-4371.
162. Chilov D, Sinjushina N, Rita H, Taketo MM, Makela TP, Partanen J: Phosphorylated beta-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain. Developmental biology 2011, 357(1):259-268.
163. Sadot E, Conacci-Sorrell M, Zhurinsky J, Shnizer D, Lando Z, Zharhary D, Kam Z, Ben-Ze'ev A, Geiger B: Regulation of S33/S37 phosphorylated beta-catenin in normal and transformed cells. J Cell Sci 2002, 115(Pt 13):2771-2780.
164. Woo M, Hakem R, Furlonger C, Hakem A, Duncan GS, Sasaki T, Bouchard D, Lu L, Wu GE, Paige CJ et al: Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nature immunology 2003, 4(10):1016-1022.
165. Carlile GW, Smith DH, Wiedmann M: Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 2004, 103(11):4310-4316.
166. Ishizaki Y, Jacobson MD, Raff MC: A role for caspases in lens fiber differentiation. The Journal of cell biology 1998, 140(1):153-158.
167. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA: Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A 2002, 99(17):11025-11030.
168. Fernando P, Brunette S, Megeney LA: Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2005, 19(12):1671-1673.
169. Fujita J, Crane AM, Souza MK, Dejosez M, Kyba M, Flavell RA, Thomson JA, Zwaka TP: Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2008, 2(6):595-601.
170. Janzen V, Fleming HE, Riedt T, Karlsson G, Riese MJ, Lo Celso C, Reynolds G, Milne CD, Paige CJ, Karlsson S et al: Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell 2008, 2(6):584-594.
171. Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K, Roberts JM, Ross R: Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol Cell 1998, 1(4):553-563.
172. Gomez I, Pena C, Herrera M, Munoz C, Larriba MJ, Garcia V, Dominguez G, Silva J, Rodriguez R, Garcia de Herreros A et al: TWIST1 is expressed in colorectal carcinomas and predicts patient survival. PLoS One 2011, 6(3):e18023.
173. Du YC, Oshima H, Oguma K, Kitamura T, Itadani H, Fujimura T, Piao YS, Yoshimoto T, Minamoto T, Kotani H et al: Induction and down-regulation of Sox17 and its possible roles during the course of gastrointestinal tumorigenesis. Gastroenterology 2009, 137(4):1346-1357.
174. Qin YR, Tang H, Xie F, Liu H, Zhu Y, Ai J, Chen L, Li Y, Kwong DL, Fu L et al: Characterization of tumor-suppressive function of SOX6 in human esophageal squamous cell carcinoma. Clin Cancer Res 2011, 17(1):46-55.