研究生: |
陳敏騰 Min-Teng Chen |
---|---|
論文名稱: |
以原子層沉積程序製備擬自旋閥奈米結構及相關磁性質之探討 Preparation of Pseudo-Spin Valve Nanostructures with Atomic Layer Deposition Processes and Study of relevant Magnetic Properties |
指導教授: |
呂世源
Shih-Yuan Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 原子層沈積 、自旋閥結構 、自旋電子學 、鐵磁性材料 、磁鐵礦 |
外文關鍵詞: | atomic layer deposition, spin valve structure, spintronics, ferromagnetic material, magnetite |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以原子層沈積系統來製備pseudo-spin valve之三明治奈米結構,其三層結構分別為Si(100)/FM1/Au/FM2,其中FM1與FM2為陶鐵磁性氧化鐵奈米薄膜,且固定FM1與Au之薄膜厚度而改變FM2氧化鐵之薄膜厚度。由於在低溫下以原子層沉積之氧化鐵薄膜為非晶相結構,因此必須經過煅燒過程,且在真空環境下通入氫氣,使非晶相之氧化鐵薄膜還原成Fe3O4之晶相結構。並可研究與討論FM2在不同沉積週期數下與煅燒前後所展現磁性之相關特性,並且藉由SEM與AFM來觀察氧化鐵薄膜其表面微結構之變化。由於氧化鐵薄膜必須經過煅燒、氫氣之還原程序才可轉變成Fe3O4之陶鐵磁特性,因此可以藉由XRD與XPS來偵測薄膜是否已經完全還原成Fe3O4之晶相結構。而在磁性量測方面,可以藉由振動樣品磁力計及四點探針在外加磁場的環境下,來量測擬自旋閥(pseudo-spin valve)之磁滯曲線與磁阻值之大小。由SEM及AFM結果顯示,在煅燒前後,氧化鐵薄膜其表面粗糙度會明顯地增加,且表面薄膜結構有轉變成顆粒狀聚集之現象。而由XRD與XPS結果顯示,非晶形之氧化鐵經過煅燒還原之後,已完全地還原成Fe3O4之晶相。而磁滯曲線之量測結果顯示,由於在煅燒還原之前,氧化鐵是非晶形結構,因此其淨磁化量為零,而沒有磁滯之曲線,但經過煅燒還原之後,由於已還原成Fe3O4之晶相,因此有磁滯之曲線的呈現。而從磁阻之量測結果顯示,在煅燒還原前後均有磁阻值之顯現,且隨著第二層氧化鐵之沉積週期數的增加,磁阻值均有增加之趨勢。
The present research focused on the fabrication of sandwiched nanostructure of pseudo-spin valve via the atomic layer deposition process. The structures of the three layer thin films included Si(100)/FM1/Au/FM2. The FM1 and FM2 were nano-thin films of ferrimagnetic iron oxide and we fixed the thicknesses of the FM1 and Au thin films but varied the thickness of the FM2 iron oxide thin film. Since iron oxide thin films prepared at low temperatures via the atomic layer deposition process were amorphous, the structure was heat treated with hydrogen gas (H2) in reduced pressure environment, to reduce the amorphous iron oxide to crystalline Fe3O4. The resulting structures were then studied for the relevant magnetic characteristics subject to variations in thickness of FM2 and application of the reductive heat treatment process. The surface morphology of the oxide thin films was observed and characterized with SEM and AFM. Amorphous iron oxide thin films were transformed into ferrimagnetic Fe3O4 crystal films via reductive heat treatment in hydrogen atmosphere. The crystalline structures of the reduced thin films were confirmed with XRD and XPS. For magnetic measurements, hysteresis curves and magneto-resistances were measured with the vibrating sample magnetometer (VSM) and 4-point probe in an applied magnetic field, respectively. From the results of SEM and AFM, the surface roughness of the iron oxide thin films increased significantly due to growth and aggregation of Fe3O4 crystals after the reductive heat treatment. And from the results of XRD and XPS, the amorphous iron oxide was successfully reduced to Fe3O4 crystals with the reductive heat treatment. Before the reductive heat treatment, the iron oxide films were amorphous, the corresponding net magnetization was equal to zero and no hysteresis was observed. But after the reductive heat treatment, the iron oxide was transformed into Fe3O4 crystals and showed hysteresis phenomena. As to the magneto-resistance, the pseudo-spin valve structures before and after the reductive heat treatment both showed magneto-resistances. And with increasing of deposition cycle numbers of the second layer iron oxide, magneto-resistance values all have the tendency of increase.
參考文獻
1. 林智仁, 1999‚“自旋閥結構Si/Ta/NiFe/Cu/Co/FeMn/Ta擴散現象
之電鏡分析”國立清華大學工程與系統科學系碩士論文.
2. 郭世斌, 2001‚“以電子束蒸鍍製作鈷鐵/銅自旋閥及合成反鐵磁
之效應究”, 國立中正大學碩士論文.
3. 張慶瑞、衛榮漢‚2003‚“單自旋金屬材料的性質與應用”.
4. Hsiao C. T, 2002.
5. Sneh, O.; Clark-Phelps, R. B.; Londergan, A. R.;
Winkler, J.; Seidel, T. E. Thin Solid Films 2002, 402,
248.
6. Juppo, M. “Atomic Layer Deposition of Metal and
Transition Metal Nitride Thin Films and In Situ Mass
Spectrometry Studies”, Academic Dissertation 2001,
Department of Chemistry, University of Helsinki, Finland
7. See http://www.ias.tuwien.ac.at/research/fghh/research/pic_resea
rch_ald.html.
8. Leskelä, M.; Ritala, M. Thin Solid Films 2002, 409, 138.
9. Hsu, C.-T. Thin Solid Films 1998, 335, 284.
10. Leskelä, M.; Ritala, M. Thin Solid Films 2002, 409,138.
11. Suntola, T.; Appl. Surf. Sci. 1996, 100/101, 391.
12. Ritala, M.; Leskelä, M. Nanotechnology 1999, 10, 19.
13. Matero, R.; Rahtu, A.; Ritala, M.; Leskelä, M.;
Sajavaara, T. Thin Solid Films 2000, 368, 1. 11.
“Atomic Layer Deposition of High Permittivity
Oxides: Film Growth and In Situ Studies” Academic
Dissertation 2002, Department of Chemistry, University
of Helsinki, Finland.
14. Wu, Y.; Yang, P. J. Am. Chem. Soc. 2001, 123, 3165.
15. 盧盈靜‚2002‚“鋇、鋁的添加對La2/3Ca1/3MnO3之導電機構及磁
阻效應之影響” ‚國立成功大學材料科學及工程學系碩士論文.
16. 陳國駒‚2000‚“鑭錳系氧化物膜之磁性、電性及磁阻效應研
究”‚國立成功大學材料科學及工程學系博士論文.
17. See http://crism.stanford.edu.
18. Inomata, K. J. Electroceramic 1998, 2, 283.
19. Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche,
K.; Samant, M. Proceedings of the IEEE 2003, 91, 661.
20. Huten, A.; Hempel, T.; Heitmann, S.; Reiss, G. Phys.
stat. sol. (a) 2002, 189, 327M.
21. BOOYONG S. LIM, ANTTI RAHTU AND ROY G. GORDON*, nature
materials VOL 2 |NOVEMBER 2003
22. S. Bae, J. H. Judy, P. J. Chen, W. F. Egelhoff, APPLIED
PHYSICS LETTERS 2002, Vol. 18, No. 12
23. R. Sbiaa, H. Morita, Appl. Phys. Lett., Vol. 84, No.
25, 2004
24. 汪建民,“材料分析”, 中國材料科學學會,民國九十年。
25. See http://www.isti.com.tw/b_technology/FESEM.htm
26. See http://elearning.stut.edu.tw/caster/3/no4/4-1.htm
27. 戴振益‚ 2004‚“[Fe3O4/ZnO]n 多層膜及退火膜結構與磁性之研
究”‚國立成功大學物理研究所碩士論文.
28. 賴志煌‚“磁阻式隨機讀取記憶體”‚國立清華大學材料系.