簡易檢索 / 詳目顯示

研究生: 鄭惠春
論文名稱: 稻米非專一性脂質運輸蛋白質與脂質的複和物晶體結構之研究
Lipid Binding in Rice Nonspecific Lipid Transfer Protein-1 Complexes from Oryza sativa
指導教授: 孫玉珠
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 35
中文關鍵詞: 脂質運輸蛋白質
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非專一性脂質運輸蛋白可以協助磷脂質、醣脂類、脂肪酸以及類固醇在細胞膜間的運輸,此蛋白質與脂質的結合具有廣泛的親和力。非專一性脂質運輸蛋白是植物中主要的脂質結合蛋白質,目前已從稻米、小麥、大麥、玉米、桃子以及杏仁中純化而出。本實驗決定了三種稻米非專一性脂質運輸蛋白複和物晶體結構,受質分別為荳蔻酸、棕櫚酸與硬脂酸。稻米非專一性脂質運輸蛋白複和物的整體結構是由四束螺旋折疊和一段長的羧基端loop組成,並在蛋白質的中央形成一疏水性空洞,此空洞提供了脂質結合的空間。稻米非專一性脂質運輸蛋白荳蔻酸與硬脂酸複和物中各含有一脂肪酸,但是稻米非專一性脂質運輸蛋白棕櫚酸複和物中含二條脂肪酸分子。第二條脂肪酸分子的結合與否可能是由脂肪酸分子與蛋白質分子的比例決定,當有足夠的脂肪酸分子時,疏水性空洞即可再容納第二條脂肪酸分子。羧基端loop具有相當的彈性使此蛋白質可以容納各式各樣的脂質分子。脂質分子主要藉由疏水性作用力和稻米非專一性脂質運輸蛋白的結合空洞結合;此外,脂質分子和蛋白質間的親水性作用力也可穩定蛋白質複和物。與脂質分子結合後,此蛋白質的結合空洞和羧基端loop有顯著的構象改變;然而,含一條和二條脂肪酸分子的蛋白質複和物間,構象差異並不大。


    Nonspecific lipid transfer proteins (nsLTPs) facilitate the transfer of phospholipids, glycolipids, fatty acids, and steroids between membranes, with wide-ranging binding affinities. Three crystal structures of rice nsLTP1 from Oryza sativa, complexed with myristic (MYR), palmitic (PAL) and stearic acid (STE) were determined. The overall structures of the rice nsLTP1 complexes belong to the four-helix bundle folding with a long C-terminal loop. The nsLTP1-MYR and the nsLTP1-STE complexes bind a single fatty acid, while the nsLTP1-PAL complex binds two molecules of fatty acids. The C-terminal loop region is elastic in order to accommodate a diverse range of lipid molecules. The lipid molecules interact with the nsLTP1 binding cavity mainly through hydrophobic interactions. Significant conformational changes were observed in the binding cavity and the C-terminal loop of the rice nsLTP1 upon lipid binding.

    Contents Abstract Chinese…………………………...……...…………………………………….……..1 English…………………..………..…………………………………………………2 1. Introduction……………………….…………………………………...……...…3 2. Results and Discussion 2.1 Overall structures of the rice nsLTP1 complexes…………………..…………………5 2.2 Lipid binding of the rice nsLTP1 complexes………………………..................………5 2.3 Two lipid-binding sites of the rice nsLTP1-PAL complex……………..……….…...…7 2.4 Unliganded and liganded rice nsLTP1s………………………..................................…7 2.5 The hydrophobic cavity of rice nsLTP1………………………………...………...…10 2.6 Comparisons with other plant nsLTP1s………………….........……….………...…11 2.7 Dual lipid biding in rice and wheat nsLTP1 complexes…………………………...…12 3. Conclusion………………………….………………………………………...…14 4. Materials and Methods 4.1 Isolation and purification of rice nsLTP1……………………..…..…….………….15 4.2 Crystallization of rice nsLTP1 complexes………………………….……………….15 4.3 Data collection for rice nsLTP1 complexes……………..………………….……….15 4.4 Structural determination and refinement of rice nsLTP1 complexes……...…….……...16 5. Protein Data Bank accession numbers…………………...……………...…18 6. Tables and Figures…………………………………………...……………...…19 7. References...……………………………………...……………...……………….30

    1. Rueckert, D. G. & Schmidt, K. (1990). Lipid transfer proteins. Chem. Phys.
    Lipids, 56, 1-20.
    2. Kader, J.-C. (1996). Lipid-transfer protein in plants. Annu. Rev. Plant Physiol.
    Plant Mol. Biol. 47, 627-654.
    3. Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H.,
    Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D.,
    Moon, H. J. & Suh, S. W. (2001). Structure basis of non-specific lipid binding
    in maize lipid-transfer protein complexes revealed by high-resolution x-ray
    crystallography. J. Mol. Biol. 308, 263-278.
    4. Lerche, M. H., Kragelund, B. B., Bech, L. M. & Poulsen, F. M. (1997). Barley
    lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a
    hydrophobic binding site that can expand to fit both large and small lipid-like
    ligands. Structure, 5, 291-306.
    5. Charvolin, D., Douliez, J.-P., Marion, D., Cohen-Addad, C. & Pebay-Peyroula,
    E. (1999). The crystal structure of a wheat nonspecific lipid transfer protein
    (ns-LTP1) complexed with two molecules of phospholipid at 2.1 Å resolution.
    Eur. J. Biochem. 264, 562-568.
    6. Sodano, P., Caille, A., Sy, D., de Person, G., Marion, D. & Ptak, M. (1997). 1H NMR and fluorescence studies of the complexation of DMPG by wheat
    non-specific lipid transfer protein. Global fold of the complex. FEBS Lett. 416,
    130-134.
    7. Poznanski, J., Sodano, P., Suh, S. W., Lee, J. Y., Ptak, M. & Vovelle, F. (1999).
    Solution structure of a lipid transfer protein extracted from rice seeds
    comparison with homologous proteins. Eur. J. Biochem. 259, 692-708.
    8. Kolattukudy, P. E. (1981). Structure, biosynthesis and biodegradation of cutin
    and suberin. Annual Review of Plant Physiology, 32, 539-568.
    9. Trevino, M. B. & O'Connell, M. A. (1998). Three drought-responsive
    members of the nonspecific lipid-transfer protein gene family in Lycopersicon
    pennellii show different developmental patterns of expression. Plant Physiol.
    116, 1461-1468.
    10. Douliez, J.-P., Michon, T., Elmorjani, K. & Marion, D. (2000a). Structure,
    biological and technological functions of lipid transfer proteins and indolines,
    the major lipid binding proteins from cereal kernels. Journal of Cereal Science,
    32, 1-20.
    11. Ge, X., Chen, J., Sun, C. & Cao, K. (2003). Preliminary study on the structural
    basis of the antifungal activity of a rice lipid transfer protein. Protein
    Engineering, 16, 387-390.
    12. Breu, V., Guerbette, F., Kader, J. C., Kannangara, C. G., Svensson, B. &
    Wettstein-Knowles, P. (1989). A 10 kDa barley basic protein transfers
    phosphatidylcholine from liposomes to mitochondria. Carlsberg Res. Commun.
    54, 81-84.
    13. Tsuboi, S., Osafune, T., Nishimura, M. & Yamada, M. (1992). Nonspecific
    lipid transfer protein in castor bean cotyledon cells: subcellular localization
    and a possible role in lipid metabolism. J. Biochem. (Tokyo), 111, 500-508.
    14. Blein, J.-P., Coutos-Thevenot, P., Marion, D. & Ponchet, M. (2002). From
    elicitins to lipid-transfer proteins: a new insight in cell signalling involved in
    plant defense mechanisms. TRENDS in Plant Science, 7, 293-296.
    15. Maldonado, A. M., Dixon, P. A., Lamb, C. J. & Cameron, R. K. (2002). A
    putative lipid transfer protein involved in systemic resistance signalling in
    Arabidopsis. Nature, 419, 399-403.
    16. Wolf, F. A. D. & Brett, G. M. (2000). Ligand-binding proteins: their potential
    for application in systems for controlled delivery and uptake of ligands.
    Pharmacological Reviews, 52, 207-236.
    17. Pato, C., Borgne, M. L., Baut, G. L., Pape, P. L., Marion, D. & Douliez, J.-P.
    (2001). Potential application of plant lipid transfer proteins for drug delivery.
    Biochemical Pharmacology, 62, 555-560.
    18. Douliez, J.-P., Michon, T. & Marion, D. (2000b). Stead-state tyrosine
    fluorescence to study the lipid-binding properties of a wheat non-specific
    lipid-transfer protein (ns-LTP1). Biochimica et Biophysica Acta, 1467, 65-72.
    19. Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K. & Suh, S. W. (1995).
    High-resolution crystal structure of the non-specific lipid-transfer protein from
    maize seedings. Structure, 3, 189-199.
    20. Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y. & Suh, S. W. (1998).
    Rice non-specific lipid transfer protein: the 1.6 Å crystal structure in the
    unliganded state reveals a small hydrophobic cavity. J. Mol. Biol. 276,
    437-448.
    21. Lerche, M. H. & Poulsen, F. M. (1998). Solution structure of barley lipid
    transfer protein complexed with palmitate. Two different binding modes of
    palmitate in the homologous maize and barley nonspecific lipid transfer
    proteins. Protein Science, 7, 2490-2498.
    22. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995). LIGPLOT: a
    program to generate schematic diagrams of protein-ligand interactions. Prot.
    Eng. 8, 127-134.
    23. Liang, J., Edelsbrunner, H. & Woodward, C. (1998). Anatomy of protein
    pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Science, 7, 1884-1897.
    24. Liu, Y.-J., Samuel, D., Liu, C.-H. & Lyu, P.-C. (2002). Purification and
    characterization of a novel 7-kDa non-specific lipid transfer protein-2 from
    rice. Biochemical and Biophsical Research Communications, 294, 535-540.
    25. Otwinowski, Z. & Minor, W. (1997). Processing of x-ray diffraction data
    collected in oscillation mode. Academic, New York, 276, 307.
    26. Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol. Biol. 33,
    491-497.
    27. Navaza, J. (1994). AMoRe: an automated package for molecular replacement.
    Acta Cryst. A50, 157-163.
    28. McRee, D. E. (1999). XtalView/Xfit-a versatile program for manipulating
    atomic coordinates and electron density. J. Struct. Biol. 125, 156-165.
    29. Brunger, A. T. (1998). Crystallography & NMR system (CNS): a new software
    suite for macromolecular structure determination. Acta Cryst. D54, 905-921.
    30. Gincel, E., Simorre, J. P., Caille, A., Marion, D., Ptak, M. & Vovelle, F. (1994).
    Three-Dimensional Structure in Solution of a Wheat Lipid-Transfer Protein
    from Multidimensional 1H-NMR Data. A New Folding for Lipid Carriers. Eur.
    J. Biochem. 226, 413-422.
    31. CrystalClear. (2002). An integrated program for the collection and processing of area detector data. Rigaku Corporation.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE