簡易檢索 / 詳目顯示

研究生: 莫方禾
Mohammadi, Farhad
論文名稱: 具備奈米碳管與石墨烯之 高性能銅金屬射出成型材料應用於高功率電子模組
Metal injected Cu/CNT-Cu and Cu/Graphene-Cu Matrix with High Thermal Conductivity and Low CTE for IGBT Modules
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 邱一
羅丞曜
方維倫
鄭裕庭
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 101
中文關鍵詞: 絕緣柵雙極電晶體金屬注射模造銅粉奈米碳管石墨烯熱傳導性熱膨脹係數複合材料
外文關鍵詞: Insulated gate bipolar transistor (IGBT), Metal injection molding (MIM), copper powder, Carbon nanotube (CNT), Graphene, Thermal conductivity, Coefficient of thermal expansion (CTE)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發新穎複合材料預期應用於高功率電晶體模組,材料的選擇會大幅影響其系統之可靠性、壽命以及安全性,電晶體係透過半導體製程技術由多層材料堆疊而成,然而,在高功率的運作之下傳統材料逐漸達到物理極限進而使得電晶體的壽命縮短且性能下降。因此,為了消除金屬層及基材之間的熱彈性係數之偏合(~300%)所造成之電晶體失效,本研究將針對高熱傳導係數以及低熱膨脹係數的要求來開發新型複合材料。本研究提出兩種方法來製造具備前述特性之新型複合材料,包括(i)將沈積過銅層的奈米碳管(CMT)添加到銅粉中形成Cu/CNT-Cu,(ii)將沈積過銅層的石墨烯添加至銅粉中形成Cu/Gr-Cu。
    基於奈米碳管(CNT)本身的材料特性,本研究假設將沈積過銅層的奈米碳管添加到銅粉之中(即Cu/CNT-Cu)將具有高熱傳導係數以及低熱膨脹係數,這樣的特性使得本研究所提出之新型奈米複合材料超越了傳統材料。為實現此目標,本研究首先提高Cu/CNT-Cu的熱傳導係數至327 W/mK且在銅金屬注射成形的性能範圍內(320-340W/mK),熱膨脹係數在此階段為6 ppm/K。為了更進一步改善其物理特性,本研究首次提出具有與純銅相近的熱傳導係數(390 W/mK)之Cu/Gr-Cu複合材料,此材料之熱傳導係數遠高於金屬注射成形的銅散熱片(320-340 W/mK),同時也具有類矽材料之熱膨脹係數(~5 ppm/K)。前述之特性是透過調整注入參數來實現,透過調整注入參數不僅可以減少材料間的空隙,同時也能透過電鍍銅層在石墨烯上來增加介面之間的結合,即Gr-Cu。此優異的性質將Cu/Gr-Cu這種材料置至於Ashby圖的頂端,並且擁有較低的熱畸變係數以及出色的溫度穩定性。因此,這種材料因其高熱傳導係數以及低熱膨脹係數,故非常適合使用在高功率的模組應用,尤其是混和動力車和電動汽車。


    The reliability, lifetime, and safety of power electric insulated gate bipolar transistor (IGBT) modules are a result of their progressive material selection, thereby necessitating the invention of new composite materials. High-end power modules are operated close to the maximum physical matching capability of their layered materials, leading to decreased lifetime and degraded performance, and thus creating demand for new composite materials with higher thermal conductivity and a lower coefficient of thermal expansion (CTE). To eliminate failures caused by the CTE mismatch (~300%) in the interface between metal and substrate material, two unique composite materials are proposed and evaulated in this thesis, including (i) the mixture of copper-coated CNT added to the copper powder (Cu/CNT-Cu) and (ii) the copper-coated graphene added to copper powder (Cu/Gr-Cu) to create nanocomposite materials.
    Based upon the material properties of CNT, the Cu/CNT-Cu material is assumed to have a unique combination of high thermal conductivity and low coefficient of thermal expansion, which results in a new composite material that goes beyond the ability of conventional materials. To achieve this goal, the Cu/CNT-Cu composite with a significant improvement in thermal conductivity (~327 W/mK) which is within the industrial scale range of copper metal injection molding (320-340 W/mK) and low coefficient of thermal expansion (~6 ppm/K) have firstly eveloped. To further improve required physical property, this thesis reports for the first time Cu/Gr-Cu composite which exhibits similar thermal conductivity to pure copper (390 W/mK), much higher than the range of metal injection molded copper heat sink (320-340 W/mK), while featuring low silicon-like CTE (~5 ppm/K). This is realized by injection parameter manipulation to not only reduce voids (vacancies) but increase the interface bonding through the use of electrodeposited copper on graphene (i.e., Gr-Cu). Such excellent property locates the Cu/Gr-Cu in the top of the Ashby map and shows excellent temperature stability with a lower thermal distortion parameter (TDP). Thus, this excellent composite material is a suitable material choice simultaneously with high thermal conductivity and low CTE, making it uniquely suited for high power module applications, especially for hybrid and electric vehicles.

    ACKNOWLEDGEMENT 5 LIST OF FIGURES 8 LIST OF TABLES 10 LIST OF EQUATIONS 11 CHAPTER 1 INTRODUCTION 12 1.1 THE ERA OF ELECTRIC VEHICLES 12 1.1.1 The importance of electric transportation 12 1.1.2 Impression of dissimilar electric ignition systems 13 1.1.4 Advantages and disadvantages 18 1.1.5 Applications 19 1.2 REDUCTION OF CARBON DIOXIDE USAGE THROUGH ELECTRIC AUTOMOBILES 19 1.2.1 Energy usage and carbon dioxide (CO2) discharges of transportation 20 1.2.2 Electric automobile production 21 1.2.3 Energy usage 21 1.2.4 Life-cycle energy usage and carbon dioxide (CO2) releases associated 21 1.3.1 Introduction 22 1.3.2 Current marketplace state 23 CHAPTER 2 METAL INJECTION MOLDING 24 2.1 INTRODUCTION 24 2.1.1 Roots of Success 26 2.1.2 Industrial Situation 26 2.1.3 Sales situation 28 2.2 POWDERS FOR METAL INJECTION MOLDING 29 2.2.1 Introduction 29 2.2.2 Metal injection molding powders 30 2.2.3 MIM powder manufacturing methods 34 2.3.1 Introduction 39 2.3.2 Binder properties and feedstock 40 2.3.3 Mixing technologies 44 2.4.1 Introduction 46 2.4.2 Injection Molding Equipment 46 2.5 DEBINDING AND SINTERING 49 2.5.1 Introduction 49 2.5.2 Primary debinding 50 2.5.3 Secondary debinding 50 2.5.4 Sintering 51 CHAPTER 3 PRIOR ARTS ON NEW MATERIALS EXPLORATION 53 3.1 CU/CNT NANOCOMPOSITES 55 3.2 CU/GRAPHENE NANOCOMPOSITE MATERIALS 58 3.3 THERMAL PROPERTIES OF GRAPHENE 60 CHAPTER 4 METHODOLOGY AND EXPERIMENTAL RESULTS 62 4.1 METHODOLOGY 62 4.1.1 Heat dissipation in microelectronics 62 4.1.2 Material selection 63 4.1.3 Copper 64 4.1.4 Powders 65 4.1.5 Multi-Walled Carbon Nanotube 67 4.1.6 Multi-layer graphene 68 4.1.7 Feedstock preparation 70 4.1.8 Molding 72 4.1.9 Debinding and sintering 75 4.2 RESULTS AND DISCUSSION 78 5.1 CONCLUSION 94 5.2 FUTURE WORKS 94 5.2.1 Hot Isostatic press 94 5.2.2 Hot forging 95 REFERENCES 96

    [1] “Reducing CO2 emissions from passenger cars,” European Commission, Apr. 2019.
    [2] Default, “World Urbanization Prospects The 2011 Revision,” pp. 1–318, May 2001.
    [3] J. Foth and B. Hellwig, “Significance of prognostic studies in the areas of the automotive market, mobility patterns and drive systems. An analysis of exemplary trend studies by well-known management consultancies,” Feb. 2011.
    [4] B. Scrosati, “Advances in Battery Technologies for Electric Vehicles,” pp. 1–547, Aug. 2015.
    [5] F. IAO, “Structure Study BWe Mobil 2015,” pp. 1–94, Nov. 2015.
    [6] A. Volke and M. Hornkamp, IGBT modules technologies, driver and application. Infineon.
    [7] M. Marz, “Thermal management in high-density power converters,” presented at the 2003 IEEE International Conference on Industrial Technology, 2003, pp. 1196–1201.
    [8] A. V. Mazur and M. M. Gasik, “Thermal expansion of silicon at temperatures up to 1100°C,” Journal of Materials Processing Technology, vol. 209, no. 2, pp. 723–727, Jan. 2009.
    [9] T. Markus, G. Thomas, W. Frank, and I. Yoo, “Innovative Power Semiconductors and their Module integration for EV/HEV Inverters,” presented at the Symposium Hybrid- und Elektrofahrzeuge Fahrevent bei IAV in Gifhorn, 2016, pp. 1–17.
    [10] J. Baliga, The IGBT device: physics, design and applications of the insulated gate bipolar transistor. 2015.
    [11] C. J. Liu, G. Q. Zhang, L. J. Emst, M. Vervoort, and G. Wisse, “Buckling driven interface delamination between a thin metal layer and a ceramic substrate,” presented at the Proceedings. st Electronic Components and Technology Conference, Orlando, 2001, pp. 624–631.
    [12] L. Deng, R. J. Young, I. A. Kinloch, R. Sun, G. Zhang, L. Noe, and M. Monthioux, “Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy,” Appl. Phys. Lett., vol. 104, no. 5, p. 051907, Feb. 2014.
    [13] K. Chu, Q. Wu, C. Jia, X. Liang, J. Nie, W. Tian, G. Gai, and H. Guo, “Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications,” Composites Science and Technology, vol. 70, no. 2, pp. 298–304, Feb. 2010.
    [14] S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites - a review,” International Materials Reviews, vol. 55, no. 1, pp. 41–64, Jul. 2010.
    [15] C. Subramaniam, Y. Yasuda, S. Takeya, S. Ata, A. Nishizawa, D. Futaba, T. Yamada, and K. Hata, “Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics,” Nanoscale, vol. 6, no. 5, pp. 2669–2674, 2014.
    [16] Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri, M. K. Samani, N. Wang, Y. Ni, Y. Zhang, Z.-B. Zhang, Q. Wang, M. Li, H. Lu, M. Sledzinska, C. M. S. Torres, S. Volz, A. A. Balandin, X. Xu, and J. Liu, “Graphene related materials for thermal management,” 2D Mater., vol. 7, no. 1, pp. 012001–43, Jan. 2020.
    [17] Y. Xiong and X. Chen, “Carbon Nanotube Reinforced Cu Matrix Composites by Hot Pressing for CNTs Embedded Composite Particles,” pp. 1–6, Mar. 2016.
    [18] G. Ding, Y. Wang, M. Deng, X. Cui, H. Wu, and L. Zhu, “Research and application of CNT composite electroplating,” in Carbon nanotubes - from research to applications, no. 6, 2014, pp. 1–31.
    [19] C. L. P. Pavithra, B. V. Sarada, K. V. Rajulapati, T. N. Rao, and G. Sundararajan, “A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness,” vol. 4, no. 1, Feb. 2014.
    [20] I. R. Walker, Reliability in scientific research improving the dependability of measurements, calculations, equipment, and software, 1st ed. Cambridge University Press, 2011.
    [21] wikipedia, Ashby Plot. Wikipedia, 2020.
    [22] C. Xu, G. Wu, Z. Liu, D. Wu, T. T. Meek, and Q. Han, “Preparation of copper nanoparticles on carbon nanotubes by electroless plating method,” Materials Research Bulletin, vol. 39, no. 10, pp. 1499–1505, Aug. 2004.
    [23] GFEL, “The Golobal Fuel Economy Initiative.” [Online]. Available: http://www.slideshare.net/schultzjm/global-passenger-vehicle-standards-update-10658424. [Accessed: 21-Jul-2016].
    [24] Statista, “Electric vehicle sales as a percentage of car sales worldwide between 2020 and 2030,” 2018.
    [25] “State of the PM Industry in North America—2019,” Jun. 2019.
    [26] F. Mohammadi and S. S. Li, “Copper like Thermal Conductivity and Silicon Like Coefficient of Thermal Expansion Copper Graphene for High Power IGBT by Metal Injection Molding ,” Mater. Trans., 2018.
    [27] O. Choi, S.-B. Lee, J.-H. Byun, W. Lee, J.-W. Yi, B.-S. Kim, E. T. Thostestenson, and T.-W. Chou, “COATING EFFECTS OF COPPER IN CNT/CARBON FABRIC HYBRID COMPOSITES USING ELECTROPHORETIC DEPOSITION,” presented at the ICCM, Edinburgh, 2009.
    [28] D. Chen, Advanced Nanopower Inc. ANP.
    [29] J.-L. Kong, S.-Q. Zhou, Q. Ren, and X. Zhang, “Study of electroless Ni-P-CNTs composite plating,” Chinese Journal of Chemical Physics, vol. 19, no. 3, pp. 259–264, Jun. 2006.
    [30] Hielscher, “UIP16000 - ultrasonic processor.”
    [31] D. F. Heaney, Handbook of metal injection molding. 2012, pp. 1–601.
    [32] T. Y. Chan, M. S. Chuang, and S. T. Lin, “Injection moulding of oxide reduced copper powders,” vol. 48, no. 2, pp. 129–133, 2005.
    [33] J. F. Sweet, M. J. Dombroski, and A. Lawley, “Property control in sintered copper: function of additives,” Internation Journal of Powder Metallurgy, vol. 28, no. A, pp. 41–51, 1992.
    [34] K. Hayashi and T.-W. Lim, “A considration on incompleteness of densification of Cu, Cu-Sn, and Cu-Ni injection molding finer powders by sintering in H2 gas,” vol. 3, pp. 129–133, 1990.
    [35] A. Upadhyaya and R. M. German, “Densification and dilation of sintered W-Cu alloys,” International journal of powder Metallurgy, vol. 32, no. 2, pp. 34–55, 1998.
    [36] Netzsch, “LFA 447 Nano Flash,” 2013.
    [37] Netzsch, “DIL 402 PC,” 2013.
    [38] SEM SU8200. Hitachi, 2016.
    [39] T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito, “Processing of carbon nanotube reinforced aluminum composite,” J. Mater. Res., vol. 13, no. 9, pp. 2445–2449, Jan. 2011.
    [40] E. Dujardin, T. W. Ebbesen, H. Hiura, and K. Tanigaki, “Capillarity and wetting of carbon nanotubes,” Science, vol. 265, no. 5180, pp. 1850–1852, Sep. 1994.
    [41] B. Lim, C.-J. Kim, B. Kim, U. Shim, S. Oh, B.-H. Sung, J.-H. Choi, and S. Baik, “The effects of interfacial bonding on mechanical properties of single-walled carbon nanotube reinforced copper matrix nanocomposites,” Nanotechnology, vol. 17, no. 23, pp. 5759–5764, Dec. 2006.
    [42] M. Schneider, M. Weiser, S. Dörfler, H. Althues, S. Kaskel, and A. Michaelis, “Electrodeposition of copper on aligned multi-walled carbon nanotubes,” Surface Engineering, vol. 28, no. 6, pp. 435–441, Nov. 2012.
    [43] S. Wiriyasart, C. Hommalee, S. Sirikasemsuk, R. Prurapark, and P. Naphon, “Thermal management system with nanofluids for electric vehicle battery cooling modules,” Case Studies in Thermal Engineering, vol. 18, p. 100583, Apr. 2020.
    [44] “Thermal management strategies for electric vehicles - Thermal management strategies for electric vehicles - Content,” Apr. 2020.
    [45] M. Manno, B. Yang, S. Khanna, P. McCluskey, and A. Bar-Cohen, “Microcontact-Enhanced Thermoelectric Cooling of Ultrahigh Heat Flux Hotspots,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 5, no. 12, pp. 1775–1783, Dec. 2015.
    [46] A. A. Balandin, “Better computing through CPU cooling,” Sep. 2009.
    [47] L. A F and S. L S, “semiconductor thermoelements and thermal cooling,” Physics Today, Feb. 1959.
    [48] T. Borca-Tasciuc D Achimov W L Li, “THERMAL CONDUCTIVITY OF InAs/ AlSb SUPERLATTICES,” Microscale Thermophysical Engineering, vol. 5, no. 3, pp. 225–231, Oct. 2010.
    [49] “Significant decrease of the lattice thermal conductivity due to phonon confinement ,” pp. 1–6, Mar. 2000.
    [50] S. Lepri, “Thermal conduction in classical low-dimensional lattices,” Physics Reports, vol. 377, no. 1, pp. 1–80, Apr. 2003.
    [51] G. Basile, C. Bernardin, and S. Olla, “Momentum Conserving Model with Anomalous Thermal Conductivity in Low Dimensional Systems,” Phys. Rev. Lett., vol. 96, no. 20, pp. 204303–5, May 2006.
    [52] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, “Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites,” Carbon, vol. 47, no. 3, pp. 570–577, Mar. 2009.
    [53] L. H, M. A, and H. Z, “Strong and ductile nanostructured Cu-carbon nanotube composite,” 2009.
    [54] P. G. Koppad, H. R. Aniruddha Ram, and K. T. Kashyap, “On shear-lag and thermal mismatch model in multiwalled carbon nanotube/copper matrix nanocomposites,” Journal of Alloys and Compounds, vol. 549, pp. 82–87, Feb. 2013.
    [55] S. K. Singhal, M. Lal, I. Sharma, and R. B. Mathur, “Fabrication of copper matrix composites reinforced with carbon nanotubes using a combination of molecular-level-mixing and high energy ball milling,” Journal of Composite Materials, vol. 47, no. 5, pp. 613–621, Mar. 2013.
    [56] B. Ji, X. Song, E. Sciberras, W. Cao, Y. Hu, and V. Pickert, “Multiobjective design optimization of IGBT power modules considering power cycling and thermal cycling,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2493–2504, Dec. 2015.
    [57] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Progress in Materials Science, vol. 56, no. 8, pp. 1178–1271, Oct. 2011.
    [58] Y. Gao, J. Zou, X. Wang, X. Wang, J. Yang, and H. Wang, “Microstructure and Mechanical Performance of Graphene Nanosheets Reinforced Nickel-Based Superalloy FGH95 Composite,” Nanomaterials, vol. 10, no. 1, pp. 100–13, Jan. 2020.
    [59] F. Mohammadi, N. Arab, and S. S. Li, “Metal Injected Copper Carbon Nanotube Composite Material with High Thermal Conductivity and Low CTE for IGBT Power Modules ,” Mater. Trans., vol. 59, no. 8, pp. 1251–1258, 2018.
    [60] A. Yahyaee, A. Bahman, and F. Blaabjerg, “A Modification of Offset Strip Fin Heatsink with High-Performance Cooling for IGBT Modules,” Applied Sciences, vol. 10, no. 3, pp. 1112–15, Feb. 2020.
    [61] P. Ball, “When graphene goes strange,” Nature Mater, pp. 1–1, Mar. 2020.
    [62] Z. Li, S. Gadipelli, H. Li, C. A. Howard, D. J. L. Brett, P. R. Shearing, Z. Guo, I. P. Parkin, and F. Li, “Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage,” Nature Energy, vol. 5, no. 2, pp. 160–168, 2020.
    [63] H. Danninger and R. Ratz, “Fabrication of Heat Transfer Devices by Metal Injection Molding,” 2004.
    [64] H. Bildstein and H. M. Ortner, “Properties and Uses of the Pseudobinary Alloys of Cu with Refractory Metals,” 1989.
    [65] N. C. Kothari, “Factors Affecting Tungsten-Copper and Tungsten-Silver Electrical Contact Materials,” Powder Metallurgy International, 1982.
    [66] L.-C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, “The smallest carbon nanotube,” Nature, vol. 408, no. 6808, pp. 50–50, 2000.
    [67] X. Rodiles, V. Reguero, M. Vila, B. Alemán, L. Arévalo, F. Fresno, V. A. de L. P. O’Shea, and J. J. Vilatela, “Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube,” Scientific Reports, vol. 9, no. 1, p. 9239, 2019.
    [68] Y.-C. Lee, M.-H. Li, Y. T. Cheng, W. Hsu, and S. S. Li, “Electroplated Ni-CNT Nanocomposite for Micromechanical Resonator Applications,” IEEE Electron Device Lett., vol. 33, no. 6, pp. 872–874, May 2012.
    [69] L.-M. Ang, T. S. A. Hor, G.-Q. Xu, C.-H. Tung, S. Zhao, and J. L. S. Wang, “Electroless plating of metals onto carbon nanotubes activated by a single-step activation method,” Chem. Mater., vol. 11, no. 8, pp. 2115–2118, Aug. 1999.
    [70] C. Kim, B. Lim, B. Kim, U. Shim, S. Oh, B. Sung, J. Choi, J. Ki, and S. Baik, “Strengthening of copper matrix composites by nickel-coated single-walled carbon nanotube reinforcements,” Synthetic Metals, vol. 159, no. 5, pp. 424–429, Mar. 2009.
    [71] C. S. Goh, J. Wei, L. C. Lee, and M. Gupta, “Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique,” Nanotechnology, vol. 17, no. 1, p. 7, 2006.
    [72] Laboratory Kneader. ap-magazine, 2014.
    [73] D. F. Heaney, Handbook of metal injection molding. WoodHead, 2012.
    [74] S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo, and S. H. Hong, “Extraordinary Strengthening Effect of Carbon Nanotubes in Metal-Matrix Nanocomposites Processed by Molecular-Level Mixing,” Adv. Mater., vol. 17, no. 11, pp. 1377–1381, Jun. 2005.
    [75] Guangyu Chai and Quanfang Chen, “Characterization Study of the Thermal Conductivity of Carbon Nanotube Copper Nanocomposites,” Journal of Composite Materials, vol. 44, no. 24, pp. 2863–2873, Nov. 2010.
    [76] S. Cho, K. Kikuchi, and A. Kawasaki, “On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite,” Acta Materialia, vol. 60, no. 2, pp. 726–736, Jan. 2012.
    [77] S. R. Bakshi, R. R. Patel, and A. Agarwal, “Thermal conductivity of carbon nanotube reinforced aluminum composites: A multi-scale study using object oriented finite element method,” Computational Materials Science, vol. 50, no. 2, pp. 419–428, Dec. 2010.
    [78] D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B, vol. 66, no. 16, p. 165440, Oct. 2002.
    [79] Q.-M. Gong, Z. Li, X.-D. Bai, D. Li, Y. Zhao, and J. Liang, “Thermal properties of aligned carbon nanotube/carbon nanocomposites,” Materials Science & Engineering A, vol. 384, no. 1, pp. 209–214, Oct. 2004.
    [80] X. Yang, C. Shi, C. He, E. Liu, J. Li, and N. Zhao, “Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites,” Composites Part A: Applied Science and Manufacturing, vol. 42, no. 11, pp. 1833–1839, Nov. 2011.
    [81] S. K. Singhal, R. Pasricha, M. Jangra, R. Chahal, S. Teotia, and R. B. Mathur, “Carbon nanotubes: Amino functionalization and its application in the fabrication of Al-matrix composites,” Powder Technology, vol. 215, pp. 254–263, Jan. 2012.
    [82] Y. Chai, K. Zhang, M. Zhang, P. C. H. Chan, and M. M. F. Yuen, “Carbon Nanotube/Copper Composites for Via Filling and Thermal Management,” presented at the 2007 Proceedings 57th Electronic Components and Technology Conference, pp. 1224–1229.
    [83] T.-Y. Chao, G.-R. Shen, and Y. T. Cheng, “Comparative Study of Ni–P–Diamond and Ni–P–CNT Nanocomposite Films,” Journal of the Electrochemical Society, vol. 153, no. 1, pp. G98–3, 2006.
    [84] L. N. Tsai, G. R. Shen, Y. T. Cheng, and W. Hsu, “Performance Improvement of an Electrothermal Microactuator Fabricated Using Ni-Diamond Nanocomposite,” J. Microelectromech. Syst., vol. 15, no. 1, pp. 149–158, Feb. 2006.
    [85] S. R. Bakshi, A. K. Keshri, V. Singh, S. Seal, and A. Agarwal, “Interface in carbon nanotube reinforced aluminum silicon composites: Thermodynamic analysis and experimental verification,” Journal of Alloys and Compounds, vol. 481, no. 1, pp. 207–213, Jul. 2009.
    [86] Helmut-Fischer GmbH, “SIGMASCOPE SMP10.”
    [87] J. L. Johnson, L. K. Tan, R. Bollina, P. Suri, and R. M. German, “Evaluation of copper powders for processing heat sinks by metal injection moulding,” vol. 48, no. 2, pp. 123–128, 2005.
    [88] M. M. Gasik, “Thermal expansion of silicon at temperatures up to 1100 °C,” vol. 209, no. 2, pp. 723–727, 2009.
    [89] F. S. Mark, R. B. Donald, L.-H. Duy, and W. Richard, “Thermal cycling effects on eutectic flip-chip die on organic packages,” High-Density Interconnect and Systems Packaging, vol. 4217, pp. 438–443, 2000.

    QR CODE