簡易檢索 / 詳目顯示

研究生: 陳政營
Cheng-Ying Chen
論文名稱: 在氧化鉛與二氧化矽混合膜平面波導上施以熱極化之研究
Study of Thermal Poling on Mixed PbO-SiO2 Planar Waveguide
指導教授: 趙 煦
Shiuh Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 99
中文關鍵詞: 氧化鉛與二氧化矽混合膜熱極化
外文關鍵詞: PbO-SiO2, thermal poling
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以RF濺鍍系統和氧化鉛靶材在熔融石英玻璃上鍍製薄膜,再經過攝氏650度的熱處理數分鐘。以筆者所查到的文獻得知:(1)鉛氧化物在攝氏550度時,僅存有氧化鉛(PbO)會穩定存在。(2)氧化鉛與二氧化矽在高溫下很容易產生相互擴散(interdiffusion),而形成氧化鉛與二氧化矽共處的玻璃質。利用上述製作方式,筆者成功地在熔融石英玻璃上製作出氧化鉛與二氧化矽混合薄膜。
    再利用穿透式光譜儀量測混合薄膜試片之光譜圖,以此光譜圖輸入Essential Macleod薄膜分析軟體計算薄膜折射率與厚度。得知混合膜折射率範圍在1.78426到1.66965之間,薄膜厚度範圍在503.45nm到654.18nm之間。且隨著熱處理時間增加(2.5∼7分鐘),混合膜折射率愈來愈小,厚度愈來愈厚。同樣的試片也以prism coupler進行量測,其混合膜折射率範圍由1.8157降至1.7315,厚度範圍由489.1nm增加至632.2nm。上述結果間接證明,氧化鉛與二氧化矽互相擴散形成混合膜。
    將此種方式製作的混合膜以二次離子質譜儀進行縱深分佈分析。發現鍍膜試片確實形成氧化鉛與二樣化矽混合膜,且看出其氧化鉛經由熱處理後的擴散分佈。經由X光薄膜繞射儀量測薄膜繞射圖,發現隨著熱處理時間得增加,薄膜愈趨向非晶形(amorphous)。
    將不同熱處理試片以攝氏275度、6kv、30分鐘施以熱極化,再以Maker’s fringe量測S.H.G signal ratio值。與熔融石英玻璃直接施以熱極化的S.H.G signal ratio值比較,其結果無法明確的指出混合膜內是否具有非線性效應。但這不代表薄膜內不具有非線性效應。熱極化混合膜6片(熱處理2.5、3、3.5、4、5.5、6分鐘)試片中,僅發現熱處理3分鐘的試片有非線性衰減的現象。


    摘要 I 誌謝辭 II 目次 III 圖表目錄 VI 第1章 緒論 1 1.1 研究動機 1 1.2 相關論文回顧與理論 2 1.3 研究方法 4 第2章 氧化鉛與二氧化矽混合膜之製作及薄膜之熱極化 5 2.1 RF濺鍍系統簡介 5 2.2 氧化鉛薄膜之鍍製 7 2.2.1 基板之準備 7 2.2.2 濺鍍機操作步驟 9 2.2.3 RF濺鍍系統製程參數 10 2.3 以熱處理製作氧化鉛與二氧化矽混合膜 15 2.3.1 熱處理機制說明 15 2.3.2 熱處理步驟 18 2.4 熱極化誘導二階非線性係數 22 2.4.1 理論機制 22 2.4.2 實驗流程及裝置 27 第3章 實驗結果與分析 29 3.1 薄膜熱處理前後Α-STEP膜厚量測分析 29 3.1.1 α-step原理說明 29 3.1.2 實驗與量測結果 30 3.2 薄膜熱處理前後光譜量測分析 32 3.2.1 光譜儀原理說明 32 3.2.2 量測結果 33 3.2.3 以Macleod薄膜分析軟體計算n、k、d 37 3.3 薄膜熱處理後以稜鏡耦合儀分析 50 3.3.1 稜鏡耦合儀原理說明 50 3.3.2 量測結果 53 3.3.3 不同方法所得薄膜之光學常數n、d的比較分析 57 3.4 X光薄膜繞射儀分析 60 3.4.1 X光薄膜繞射儀原理說明 60 3.4.2 X光薄膜繞射儀量測結果 61 3.5 薄膜試片以二次離子質譜儀縱深分佈量測 63 3.5.1 二次離子質譜儀(S.I.M.S)原理說明 63 3.5.2 薄膜縱深分佈量測結果 66 3.6 二階非線性係數量測 69 3.6.1 非線性光學的二階諧波產生理論 69 3.6.2 Maker’s fringe量測原理說明 71 3.6.3 量測結果 73 第4章 結論與未來展望 82 4.1 結論 82 4.2 未來展望 83 附錄 85 A.鉛玻璃性質 85 A.1鉛玻璃特性 85 A.2鉛玻璃成分 88 A.3鉛玻璃光譜圖 92 A.4鉛玻璃熱極化 94 參考文獻 98

    1. U.Osterberg , W.Margulis , “Dye laser pumped by Nd:YAG laser pulses frequency double in a glass optical fiber” Optical Letters vol. 11 No. 8 (1986)
    2. R. A. Myers , N. Mukherjee , “Large second-order nonlinearity in poled fused silica” Optics letters ,Vol. 16, No. 22,November 15, (1991)
    3. R.H. Stolen , W.K. Tom , “Self-organized phase-matched harmonic generation in optical fibers” Optics letters , 12, 585 (1987)
    4. X.M. Liu, M.D. Zhang, “Theoretical study for thermal/electric field poling of fused silica” Jpn. J. Appl. Phys. Vol. 40 (2001) pp.4069-4076
    5. Richard Abbott Myers, “Large second-order nonlinearity in amorphous SiO2 using temperature/electric-field poling” , Ph. D. Dissertation, B.A., physics, University of California at Santa Cruz, 1989
    6. Y.Luo , A. Biwas , A. Frauenglass , S.R.J. Brueck , “Large second harmonic signal in thermally poled lead glass-silica waveguides” Applied Physics Letter , Vol. 84 , Number 24 , 14 June 2004
    7. “薄膜光學與鍍膜技術” 第三版 李正中編著
    8. A.F. Wells, “Structural Inorganic Chemistry”, 3rd ed. Oxford Univ. Press, 1962, p.475
    9. H. Bach and H. Schroeder, Thin Solid Films, 48 (1978) 201-213.
    10. J. A. Duffy and H. Bach, Thin Solid Films, 48 (1978) 377-383.
    11. N. Mukherjee, R. A. Myers, S.R. J. Brueck, “Dynamics of second-harmonic generation in fused silica”, J. Opt. Soc. Am. B11, 665-669(1994)
    12. T. G. Alley, “The formation of the second-order nonlinearity in thermally poled fused silica glass”, Ph.D. Dissertation, University of New Mexico (1998)
    13. T. G. Alley, and S. R.J. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass”, Opt. Lett. 23, 1170-1172 (1998)
    14. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation”, Appl. Phys. Lett. 74, 2423-2425(1999)
    15. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck , “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica”, J. Appl. Phys. 86, 6634-6640(1999)
    16. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation”, Appl. Phys. Lett. 74, 2423-2425(1999)
    17. T. G. Alley, S. R. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica”, J. Non-Cryst. Solids 242, 165-176(1998)
    18. W. Xu, J. Arentoft, D. Wong, and S. Fleming, “Evidence of space-charge effects in thermal poling”, Photon. Technol. Lett. 11, 1265-1267(1999)
    19. 汪建民,材料分析
    20. Bahaa E. A. Saleh and Malvin Carl Teich, “Fundamentals of photonics,” (A Wiley-Interscience publication, New York, 1991)
    21. Yi-Hsuan Lin, “Study of second order nonlinear optics characteristics induced by vacuum thermal poling on optical grade fused silica,” Master Dissertation, National Tsing Hua University (2003).
    22. Huai-Yi Chen, “A study on the optical nonlinearity of thermally poled planar fused silica plates and development of QPM S.H.G devices”, Ph. D. Dissertation, National Tsing Hua University(2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE