簡易檢索 / 詳目顯示

研究生: 胡員彬
論文名稱: 利用桿狀病毒/昆蟲細胞表現系統表現家禽流行性感冒病毒血球凝集素 (HA)蛋白質並以親和性管柱層析法純化
Expression of Avian Influenza Virus Hemagglutinin Using Baculovirus/Insect Cell Expression System and Its Purification by Affinity Chromatography
指導教授: 胡育誠
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 44
中文關鍵詞: 桿狀病毒/昆蟲細胞表現系統血球凝集素親和性管柱層析
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • H5亞型高病原性家禽流行性感冒病毒 (avian influenza virus, AIV)已對世界各地養禽產業與人類健康造成重大的威脅,血球凝集素 (hemagglutinin, HA)是流感病毒表面的膜蛋白之一,可以幫助病毒顆粒附著於細胞表面,促進病毒和細胞膜形成融合狀態,更是引發中和抗體的主要抗原,因此此蛋白質的純化和特性分析可以幫助加快疫苗的研發及檢測試劑的開發速度。由於桿狀病毒/昆蟲細胞表現系統已被廣泛應用於生產重組蛋白質,同時生產出的重組蛋白質和大腸桿菌及真菌表現系統相較之下,有較好的轉譯後修飾的能力,因此我們建構帶有HA基因的重組桿狀病毒,之後將放大後的病毒感染Sf-9,並在感染3天後將細胞離心下來。由影像分析系統可知,每公升的細胞培養液大約可以產生11.6毫克的HA。由於HA是一種膜蛋白,因此之後利用二階段萃取的方式打破細胞得到HA,再利用親和性管柱層析法 (lentil lectin)純化HA,純化的回收率約為38 %。


    Highly pathogenic avian influenza virus (AIV) had threatened the poultry industry worldwide and human beings health. Hemagglutinin (HA), one of the influenza virus membrane proteins, plays a pivotal role in mediating the virus attachment and subsequent fusion and is the major antigen. Purification and characterization of HA thus becomes critical for the development of vaccines and diagnostic tools. Baculovirus/insect cell expression system has been widely used for recombinant protein production, thus we constructed a recombinant baculovirus, BacHA encoding the HA gene, for HA expression in insect cells (Sf-9). The infection resulted in successful expression and the yield amounted to 11.6 mg/l culture at 3 days post-infection as estimated by scanning densitometry. Since HA is a membrane glycoprotein, a two-staged scheme was adopted to extract HA. The extracted protein was subsequently purified by lentil lectin affinity chromatography and the recovery yield was estimated to be 38%.

    目錄: 第一章 文獻回顧 1-1 前言………………………………………………………………….1 1-2 家禽流行性感冒病毒簡介………………………………………….1 1-2-1 病毒分類、結構、型態與功能……………………….……….1 1-2-2 血球凝集素簡介……………………………………..………….2 1-2-3 流行性感冒於人類之疫情…………………………………...…3 1-3 桿狀病毒/昆蟲細胞表現系統……………………….…………...5 1-3-1 桿狀病毒分類與結構…………..………………….…………5 1-3-2 桿狀病毒與昆蟲細胞表現系統…..…………………………….6 1-4 親和性管柱層析法簡介………………………………….…………8 1-5 研究動機…………………………………………………………….9 第二章 實驗材料及方法 2-1 材料…………………………………………………....……...14 2-1-1 細胞株………………………………………………………….14 2-1-2 藥品與試劑…………………………………………………….14 2-2 建構重組桿狀病毒………………………………………..…….14 2-2-1建構重組轉殖載體……………………………………………...14 2-2-2 轉置反應……………………………………………………….14 2-2-3 分離基因重組之bacmid……………………………………....16 2-2-4 轉染反應……………………………………………………....16 2-2-5 PCR確認重組桿狀病毒之DNA……………………………….16 2-3 細胞培養及感染方法……………………………………………..17 2-3-1 昆蟲細胞之培養………………………………………….…...17 2-3-2 以終點稀釋法決定病毒的效價……………………………….17 2-3-3 放大重組桿狀病毒…………………………………………….17 2-3-4 以重組桿狀病毒感染昆蟲細胞……………………………….18 2-4 HA萃取最適化………………………………………………….….18 2-5 利用親和性管柱層析法純化HA……………………………….…19 2-6 利用西方點墨法確定HA的表現…………………………………19 2-6-1 SDS-PAGE凝膠電泳…………………………………………...19 2-6-2 西方點墨法…………………………………………………….20 2-7 純化後蛋白質的定量分析與計算產率及純化回收率…………21 第三章 結果與討論 3-1 建構重組桿狀病毒………………………………………………..23 3-2 以重組桿狀病毒感染Sf-9………………………………………..23 3-3 Extraction條件測試………………………………………………25 3-4 利用親和性管柱層析純化HA………………………………….…27 3-5 討論………………………………………………………………..30 3-5-1 評估ConA純化HA的可行性………………………………....30 3-5-2 評估離子交換樹脂純化HA的可行性……………………...…31 第四章 結論及未來展望……...……………………………….…41 Reference……………………………………………………………..43 圖表目錄: 圖1-1 流感病毒的結構.……………………………………………….10 圖1-2 新型流感病毒演化為人傳染給人的可能模式………………..11 圖1-3 Bac-To-Bac® 重組桿狀病毒建構之流程圖…………………12 圖1-4 pFASTBAC DUAL載體示意圖…………………….….………….13 表2-1 S.O.C.的成分……………………………………………………15 表2-2 Luria Agar plate的成分………………………………………15 表2-3 proteinase K反應配方………………………..………………17 表2-4 SDS-PAGE組成成分……………………………………………20 圖2-1重組轉殖載體pBacHA的示意圖……………….………………22 表3-1 Sf-9的存活率隨感染時間變化的情形…………………………24 表3-2 各個純化步驟的回收率………………………………………..30 圖3-1確認重組轉殖載體內含有HA gene的電泳結果….……………33 圖3-2 時間序列分析HA的表現情形…………………………………34 圖3-3 不同detergents對萃取效率的影響.....................35 圖3-4 不同NaCl濃度對萃取效率的影響…………………………....35 圖3-5 冰上作用不同時間對萃取效率的影響….…………………….36 圖3-6 單一階段萃取和二階段萃取HA的比較……….……………...36 圖3-7 萃取HA的流程圖………………………………..……………..37 圖3-8 利用lentil lectin純化HA的結果……………………………38 圖3-9利用lentil lectin純化HA的結果…………................39 圖3-10 用ConA測試是否可以用來純化HA……….................40

    [1] L. Englund, and C. Hard af Segerstad, Two avian H10 influenza A virus strains with different pathogenicity for mink (Mustela vison), Arch Virol 143 (1998) 653-666.
    [2] E. G. Brown, Influenza virus genetics, Biomed Pharmacother 54 (2000) 196-209.
    [3] D. J. Alexander, A review of avian influenza in different bird species, Vet Microbiol 74 (2000) 3-13.
    [4] J. A. Walker, and Y. Kawaoka, Importance of conserved amino acids at the cleavage site of the haemagglutinin of a virulent avian influenza A virus, J Gen Virol 74 ( Pt 2) (1993) 311-314.
    [5] P. Gao, S. Watanabe, T. Ito, H. Goto, K. Wells, M. McGregor, A. J. Cooley, and Y. Kawaoka, Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong, J Virol 73 (1999) 3184-3189.
    [6] I. A. Wilson, J. J. Skehel, and D. C. Wiley, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature 289 (1981) 366-373.
    [7] D. C. Wiley, and J. J. Skehel, The structure and function of the hemagglutinin membrane glycoprotein of influenza virus, Annu Rev Biochem 56 (1987) 365-394.
    [8] L. Godley, J. Pfeifer, D. Steinhauer, B. Ely, G. Shaw, R. Kaufmann, E. Suchanek, C. Pabo, J. J. Skehel, D. C. Wiley, and et al., Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity, Cell 68 (1992) 635-645.
    [9] K. Subbarao, A. Klimov, J. Katz, H. Regnery, W. Lim, H. Hall, M. Perdue, D. Swayne, C. Bender, J. Huang, M. Hemphill, T. Rowe, M. Shaw, X. Xu, K. Fukuda, and N. Cox, Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness, Science 279 (1998) 393-396.
    [10] K. Y. Yuen, P. K. Chan, M. Peiris, D. N. Tsang, T. L. Que, K. F. Shortridge, P. T. Cheung, W. K. To, E. T. Ho, R. Sung, and A. F. Cheng, Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus, Lancet 351 (1998) 467-471.
    [11] Y. P. Lin, M. Shaw, V. Gregory, K. Cameron, W. Lim, A. Klimov, K. Subbarao, Y. Guan, S. Krauss, K. Shortridge, R. Webster, N. Cox, and A. Hay, Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates, Proc Natl Acad Sci U S A 97 (2000) 9654-9658.
    [12] P. S. Chin, E. Hoffmann, R. Webby, R. G. Webster, Y. Guan, M. Peiris, and K. F. Shortridge, Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry, J Virol 76 (2002) 507-516.
    [13] D. Cyranoski, and A. Abbott, Virus detectives seek source of SARS in China's wild animals, Nature 423 (2003) 467.
    [14] F. van Kolfschooten, Dutch veterinarian becomes first victim of avian influenza, Lancet 361 (2003) 1444.
    [15] L. Ikonomou, Y. J. Schneider, and S. N. Agathos, Insect cell culture for industrial production of recombinant proteins, Appl Microbiol Biotechnol 62 (2003) 1-20.
    [16] T. A. Kost, J. P. Condreay, and D. L. Jarvis, Baculovirus as versatile vectors for protein expression in insect and mammalian cells, Nat Biotechnol 23 (2005) 567-575.
    [17] V. C. Emery, and D. H. Bishop, The development of multiple expression vectors for high level synthesis of eukaryotic proteins: expression of LCMV-N and AcNPV polyhedrin protein by a recombinant baculovirus, Protein Eng 1 (1987) 359-366.
    [18] X. Z. Wang, B. G. Ooi, and L. K. Miller, Baculovirus vectors for multiple gene expression and for occluded virus production, Gene 100 (1991) 131-137.
    [19] D. R. O'Reilly, Use of baculovirus expression vectors, Methods Mol Biol 62 (1997) 235-246.
    [20] S. B. Hwang, K. J. Park, and Y. S. Kim, Overexpression of hepatitis delta antigen protects insect cells from baculovirus-induced cytolysis, Biochem Biophys Res Commun 244 (1998) 652-658.
    [21] D. Cavard, Role of Cal, the colicin A lysis protein, in two steps of colicin A release and in the interaction with colicin A-porin complexes, Microbiology 150 (2004) 3867-3875.
    [22] J. Crawford, B. Wilkinson, A. Vosnesensky, G. Smith, M. Garcia, H. Stone, and M. L. Perdue, Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes, Vaccine 17 (1999) 2265-2274.
    [23] D. L. Jarvis, and E. E. Finn, Biochemical analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells, Virology 212 (1995) 500-511.
    [24] K. Docherty, and D. F. Steiner, Post-translational proteolysis in polypeptide hormone biosynthesis, Annu Rev Physiol 44 (1982) 625-638.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE