| 研究生: |
李斯愉 Lee, Szu-Yu |
|---|---|
| 論文名稱: |
應用虛擬實境於化學實驗教學之表現及心智負荷評估 Evaluation of Performance and Mental Workload Using Virtual Reality as a Chemical Experiment Training Tool |
| 指導教授: |
張堅琦
Chang, Chien-Chi |
| 口試委員: |
孫天龍
Sun, Tien-Lung 黃瀅瑛 Huang, Ying-Yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 化學實驗 、虛擬實境 、訓練 、學習表現 、心智負荷 |
| 外文關鍵詞: | Chemical Experiment, Virtual Reality, Trianing, Performance, Mental Workload |
| 相關次數: | 點閱:200 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,台灣各大專院校發生了多次的實驗室災害,起因除地震、機器故障等外界因素之外,有78%的意外都包含了人為因素,如操作不慎、清理不慎、及儲存不實等原因,這樣的人為意外小則造成機器毀損,大則造成火災等人員傷亡的事故,實為社會的一大損失,如何能減少這樣的事故發生率,是社會該共同努力的目標。
虛擬實境為近年來發展快速的新興科技,應用領域廣泛,包含軍事、航空、銷售、遊戲等,除此之外,教育也是一個相當受到重視的領域,透過更直接的感受事物,及與環境進行互動,學習者能有更深刻的印象,期望可藉此提升學習者的學習效果,並減少其在實際執行作業時的錯誤率。
本研究的目標為找出最適合的教學工具,在不耗用多餘人力於教導及監督的情況下,使實驗操作人員能得到完善的教育,實驗中比較了傳統的手冊說明書、影片教學、和虛擬實境教學系統,觀測三種訓練工具對學習人員的學習成效及心智負荷影響,並以操作錯誤、操作時間來判斷學習成效,NASA-TLX問卷及心律變異來觀測心智負荷影響。
從學習成效的結果,可以發現影片仍是目前效果最好的訓練工具,而虛擬實境則是存在一些技術面及普及性的問題,造成學習成效結果起伏較大,從心智負荷結果來看,三種訓練工具並沒有呈現顯著差異,因此可以推斷選擇的訓練工具,不會對學習人員產生不同的負荷影響。
目前虛擬實境的使用並不廣泛,但陸續有一些廠商開始使用此技術進行員工訓練,無非就是因為虛擬實境具有隔離於實際環境、可重複性等優點,讓越來越多人看中了這種教育訓練模式,雖然虛擬實境的應用仍處於挑戰階段,但從結果來看,還是具有相當大的未來潛力。
There are many laboratory accidents happened over and over again in Taiwan in decade. Except for the environmental causes, like the earthquake, mechanical failure, there are about 78% of the accidents happened due to the human error. Careless manipulation, unaware cleaning, inexact storage are all included. These accidents may cause machine breakdown, fire, or even people hurt and died. To decrease these kinds of accidents is an issue for the society.
In recent years, virtual reality technique has been developed rapidly. It was applied in many areas, such as military, aerospace, sales, and games areas. Education is also one expected area for the usage of virtual reality. Through the training in virtual reality, learners can feel things directly, and interact with the environments. It is expected that learners can learn efficiently and decrease the error in the real operations.
The objective of this research is to find out the best training tool to teach the learners efficiently without the human monitoring aside. Therefore, this study apply the virtual reality to the chemical experiments training. Compare to the video and manual training in the same training duration. Then, find the best training tool with the better performance and less mental workload in real operation. The operation error and time were used to measure performance, and the NASA-TLX questionnaire, HRV were used to measure mental workload.
The result shows that video is still the best training tool nowadays. Learners have better performance using video training system. Considering the virtual reality in training, it shows the potentiality but also facing some problems. Users are still not familiar with it and hard to correspond the controller buttons to the real environment instruments. Despite this, there are lots of companies start to develop the virtual reality training system. Training repeatedly in an isolated environment can reduce the training resources and dangers. Therefore, improved virtual reality in the future can still be an expecting training way.
[1] Aaron Bangor, Philip T. Kortum, James T. Miller. (2008). An Empirical Evaluation of the System Usability Scale. Intl. Journal of Human–Computer Interaction, 24:6, 574-594.
[2] Aaron Bangor, Philip T. Kortum, James T. Miller. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, Vol 4, Issue 3, 114-123.
[3] Battiste V., Bortolussi M. (1988). Transport pilot workload: A comparison of two subjective techniques. In Proceedings of the Human Factors Society Thirty Second Annual Meeting, 150–154.
[4] Boud A.C., Haniff D.J., Baber C., Steiner S.J. (1999). Virtual reality and augmented reality as a training tool for assembly tasks. IEEE, 32-36.
[5] Brooke, J. (1996). SUS: A “quick and dirty” usability scale. Usability Evaluation in Industry, London: Taylor and Francis.
[6] Cobb S. C., Richir, S. (Ed.), D'Cruz, M., Klinger, E. (Ed.), Day, A., David, P., ... Mavrikios, D. (2008). How is VR used to support training in industry? The INTUITION network of excellence working group on education and training. VRIC 2008. 75-83.
[7] David Giles, Nick Draper, William Neil. (2016). Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol, 116, 563–571.
[8] Delaney JP, Brodie DA. (2000). Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Percept Mot Skills, 21(2), 515-24.
[9] Fan Zhang, Shixiong Chen, Haoshi Zhang, Xiufeng Zhang, Guanglin Lia. (2014). Bioelectric signal detrending using smoothness prior approach. Medical Engineering & Physics, 36(8).
[10] Fatma Alkan, Canan Koçak. (2014) Chemistry laboratory applications supported with simulation. Procedia - Social and Behavioral Sciences 176, 970 – 976.
[11] Hart S. G., Staveland L. E.. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Human Mental Workload, P. A. Hancock and N. Meshkati (Ed.), Amsterdam: North Holland Press., 139–183.
[12] James Elliman, Michael Loizou, Fernando Loizides. (2016). Virtual Reality Simulation Training for Student Nurse Education. IEEE.
[13] J´an C´ıger, Mehdi Sbaouni, Christian S´egot. (2015). Virtual Reality Training of Manual Procedures in the Nuclear Sector. IEEE.
[14] Kirkpatrick D. (1996). Revisiting Kirkpatrick’s four-level-model. Training & Development, 1, 54-57.
[15] Kirkpatrick D. L. (1994). Evaluating training programs: the four levels. San Francisco: Berrett-Koehler.
[16] Lackey S. J., Salcedo J. N., J.L. Szalma, P.A. Hancock. (2016). The stress and workload of virtual reality training: the effects of presence, immersion and flow, Ergonomics, 59:8, 1060-1072.
[17] Lizawati Salahuddin, Jaegeol Cho, Myeong Gi Jeong, Desok Kim. (2007). Ultra Short Term Analysis of Heart Rate Variability for Monitoring Mental Stress in Mobile Settings. IEEE.
[18] Marchant-Forde RM, Marlin DJ, Marchant-Forde JN. (2014). Validation of a cardiac monitor for measuring heart rate variability in adult female pigs: accuracy, artefacts and editing. Physiol Behav. 80(4), 449-58.
[19] Marek Koźlak, Antoni Kurzeja, Aleksander Nawrat. (2013). Virtual Reality Technology for Military and Industry Training Programs. In: Nawrat A., Kuś Z. (eds) Vision Based Systems for UAV Applications. SCI481, 327-334.
[20] McCraty, Rollin, Atkinson, Mike, Tiller, William A, Rein, Glen, Watkins, Alan D. (1995). The effects of emotions on short-term power spectrum analysis of Heart Rate Variability. The American journal of cardiology, 76(14), 1089-1093.
[21] Mika P. Tarvainen, Juha-Pekka Niskanen, Jukka Lipponen, Perttu O. Ranta-aho, Karjalainen PA. (2013). Kubios HRV – Heart rate variability analysis software. Computer Methods Programs Biomed, 113(1):210-20.
[22] Mika P. Tarvainen, Jukka Lipponen, Juha-Pekka Niskanen, Perttu O. Ranta-aho. (2018). Kubios HRV (ver. 3.1) USER’S GUIDE.
[23] Reetta Orsila, Matti Virtanen, Tiina Luukkaala, Mika Tarvainen, Pasi Karjalainen, Jari Viik, Minna Savinainen, Clas-Håkan Nygård. (2015). Perceived Mental Stress and Reactions in Heart Rate Variability—A Pilot Study Among Employees of an Electronics Company. International Journal of Occupational Safety and Ergonomics, 14:3, 275-283.
[24] Revati Shriram, Dr. M. Sundhararajan, Nivedita Daimiwal. (2012). EEG Based Cognitive Workload Assessment for Maximum Efficiency. IOSR-JECE, 34-38.
[25] Sansanee Boonnithi, Sukanya Phongsuphap. (2011). Comparison of Heart Rate Variability Measures for Mental Stress Detection. Computing in Cardiology, 38, 85-88.
[26] Sawin D. A., Scerbo M. W. (1995). Effects of Instruction Type and Boredom Proneness in Vigilance: Implications for Boredom and Workload , Human Factors, Vol 37, Issue 4, 752 – 765
[27] Seymour NE, Gallagher AG, Roman SA, O'Brien MK, Bansal VK, Andersen DK, Satava RM. (2002). Virtual Reality Training Improves Operating Room Performance. Annals of Surgery, Vol. 236, No. 4, 458–464.
[28] Sheridan, T. B., Stassen, H. G. (1988). Definitions, models and measures of human workload. In N. Moray (Ed.), Mental Workload: Its Theory and Measurement. New York: Plenum Press, 219-233.
[29] Shudayfat E., Moldoveanu F., Moldoveanu A. D. B. (2012). A 3D Virtual Learning Environment for Teaching Chemistry in High School. DAAAM, Vol 23, No.1.
[30] Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology. (1996). Heart rate variability. Eur Heart J, Vol. 17, 354–381.
[31] Wang ZL, Yang L, Ding JS. (2005). Application of heart rate variability in evaluation of mental workload. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 23(3), 182-4.
[32] Xu Xu. (2014). Analysis on Mental Stress/Workload Using Heart Rate Variability and Galvanic Skin Response during Design Process.
[33] Zhao X, Shi C, You X and Zong C. (2017). Analysis of Mental Workload in Online Shopping: Are Augmented and Virtual Reality Consistent? Front. Psychol. 8:71.
[34] 肖元梅, 王治明, 王绵珍, 兰亚佳. (2005). 主观负荷评估技术和NASA任务负荷指数量表的信度与效度评价. 中华劳动卫生职业病杂志2005年6月第23卷第3期, 178-180.
[35] 邱皓政. (2010). 量化硏究與統計分析: SPSS (PASW) 資料分析範例. 五南圖書出版股份有限公司.
[36] 翁根本, 何慈育, 歐善福, 林竹川, 謝凱生. (2009). 心律變動性分析. 台灣醫界, Vol.52, No.6.
全文公開日期 本全文未授權公開 (校內網路)