簡易檢索 / 詳目顯示

研究生: 王志航
Wang, Chih-Hang
論文名稱: 一些針對節能社群物聯網之最佳化演算法
Some Optimization Algorithms for Energy-Efficiency Social Internet of Things
指導教授: 陳文村
Chen, Wen-Tsuen
楊得年
Yang, De-Nian
許健平
Sheu, Jang-Ping
口試委員: 曾煜棋
Tseng, Yu-Chee
陳志成
Chen, Jyh-Cheng
逄愛君
Pang, Ai-Chun
王志宇
Wang, Chih-Yu
學位類別: 博士
Doctor
系所名稱:
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 120
中文關鍵詞: 社群物聯網最佳化近似演算法資源分配獵能
外文關鍵詞: social IoT, optimization, approximation algorithm, resource allocation, energy harvesting
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧晶片技術的發展,社群物聯網近年來已經受到廣泛的關注。在社群物聯網中,不同的智慧裝置之間具有社群關係且能夠組成團體在不經由遠端伺服器的協助下,直接共同辨識並處理偵測到的事件。為了處理大量的社群物聯網資料及提升其網路強健性,行動邊端運算和無線能量傳輸的無線能量傳輸技術是其中兩個重要的技術。行動邊端運算能夠有效地在網路邊端處理社群物聯網的大數據使得整體網路的傳輸量和計算量能卸載至邊端伺服器,而獵能技術能夠延長網路生命以增進社群物聯網的強健性和覆蓋率使得社群物聯服務能夠廣泛地佈建。同時,由於資訊通訊科技的爆炸性成長,節能問題近年來已受到高度重視。因此,本博士論文廣泛地探討節能社群物聯網,並提出了不同的最佳化和近似演算法使得整體網路的資源配置和能量消耗最小化。首先,本論文研究多攝影機監視系統在蜂巢式網路的資源配置問題,在最小化資源區塊配置數量的情形下,同時確保監視系統的覆蓋需求和無線通訊系統的限制能被滿足。本論文針對一般性情況設計一近似演算法最小化配置給攝影機的資源區塊數量,接著,在曼哈頓街道圖上探討此問題以了解監視器選擇的問題本質,並提出了最佳化攝影機選擇演算法。根據真實的攝影機地圖和大量模擬資料所做的實驗結果顯示,所提出之方法和現存的其他方法相比,能有效地減少配置的資源區塊數量。接著,本論文探討在無線邊端運算網路下的物聯社群建立和物聯裝置選擇問題,其中每一個物聯裝置皆具有人工智慧晶片技術,使得這些物聯裝置能自動地建立社群,並針對使用者的服務請求進行共同決策。針對此問題,本論文提出一近似演算法有效解決1)通訊和計算能量的權衡、2)社群物聯網的跨層設計及封包傳送和3)資料聚合的能量效益權衡,使得整體能量消耗最小化。根據真實網路拓樸的模擬,結果顯示所消耗之總能量能有效地減少超過50%。最後,為了提升社群物聯網的強健性,本論文在獵能和人體健康的限制下,研究基於健康需求的波束成型方法對選擇的物聯裝置進行充能。本論文設計一近似演算法以最小化輻射暴曬和最大化物聯網覆蓋,模擬結果顯示所提出的方法其效能顯著地勝過現有的獵能方法200%以上。值得一提的是以上的演算法可以提供社群物聯網總解決方案,首先,資源配置演算法可以分配資源區塊給物聯裝置和物聯社群群體,此外,基於健康需求的波束成型技術可以安全地幫物聯裝置充能。


    With the development of artificial intelligence (AI) on chips, social internet of things (SIoT) has drawn increasing attention because a group of devices with social relationships can collaborate to directly identify and handle local events without the help of servers. In order to cope with local SIoT data and enhance the robustness of SIoT, mobile edge computing and wireless power transfer are two of the most important paradigms. With mobile edge computing, SIoT data can be locally managed to alleviate data transmission and computation in the backhaul networks, whereas wireless power transfer can prolong the network
    lifetime to enhance the robustness and coverage of SIoT such that SIoT services can be widely deployed. Meanwhile, optimizing energy efficiency is important due to the explosive growth of information and communication technology. Therefore, this dissertation investigates the energy-efficiency SIoT and proposes some optimization and approximation algorithms to minimize allocated resources and energy consumption in the networks. Firstly, this dissertation explores the uplink resource allocation problem for multi-camera surveillance systems in cellular networks. The objective is to minimize the number of allocated resource blocks (RBs), while simultaneously ensuring the coverage requirement for
    the surveillance system and coping with the wireless communication limitation in cellular networks. An approximation algorithm is designed for the general case and optimal solutions for the camera deployments in the Manhattan street map are proposed to find the
    intrinsic properties of camera selections. Simulation results, based on two real surveillance maps and synthetic datasets, show that the number of allocated RBs can be effectively reduced compared to the existing approaches for cellular networks. Secondly, this dissertation investigates the SIoT group construction and device selection problem, where the IoT devices encompass AI-on-chips technologies such that the devices are able to automatically build social groups to make decisions. An approximation algorithm is proposed to minimize the overall energy consumption by exploring communication and computation trade-off, cross-layer design in an SIoT, and forwarding and aggregation trade-off in mobile edge computing networks. Simulations on two real networks show that the overall energy consumption can be effectively reduced by more than 50%. To enhance the robustness of
    SIoT, this dissertation finally explores the health-aware beamforming to charge the selected IoT devices under the energy harvesting and human safety constraints. An approximation algorithm is proposed to minimize radiation exposure and maximize IoT coverage and simulation results manifest that it significantly outperforms the previous energy harvesting approaches by more than 200%. It is worth noting that the above algorithms can jointly provide the total solution to SIoT. The resource allocation algorithm is used to allocate RBs to the selected devices and collaborative groups of SIoT. On the other hand, the health-aware
    beamforming safely charges the selected IoT devices.

    1 Introduction 1 2 The Survey of SIoT and Its Applications 7 2.1 Uplink Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 IoT and MEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 SIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Energy Harvesting with Wireless Power Transfer . . . . . . . . . . . . . . 13 3 Resource Allocation for SIoT 15 3.1 System Model and Problem Description . . . . . . . . . . . . . . . . . . . 15 3.2 Hardness Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Algorithm Design for the General Camera Deployment . . . . . . . . . . . 19 3.3.1 Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . 21 3.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.4 Approximation Ratio of MRAMC . . . . . . . . . . . . . . . . . . 25 3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Algorithm Design for the Camera Deployments on the Manhattan Street Map 28 3.4.1 CSRAP with Arbitrary Camera Directions and Channel Qualities . 28 3.4.2 CSRAP with the Outward Camera Direction and Arbitrary Channel Qualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.3 CSRAP with the Outward Camera Direction and Equal Channel Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.2 Camera Deployments on the Manhattan Street Map . . . . . . . . . 42 3.5.3 General Camera Deployments . . . . . . . . . . . . . . . . . . . . 46 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 SIoT Device Selection and Group Construction 54 4.1 System Model and Problem Description . . . . . . . . . . . . . . . . . . . 54 4.2 Hardness Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3 Collaborative Groups in Different SIoT Scenarios . . . . . . . . . . . . . . 59 4.3.1 Grid Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.2 All-Pair Argumentation . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Algorithm Design for EICGS . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4.1 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . 67 4.4.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4.3 Approximation Ratio of EICGS . . . . . . . . . . . . . . . . . . . 74 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5.1 Distributed Implementation of EICGS . . . . . . . . . . . . . . . . 77 4.5.2 Dynamic User Request . . . . . . . . . . . . . . . . . . . . . . . . 79 4.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.6.3 Performance of D-EICGS . . . . . . . . . . . . . . . . . . . . . . 85 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Wireless Power Transfer for SIoT 88 5.1 System Model and Problem Description . . . . . . . . . . . . . . . . . . . 88 5.1.1 Two Safety Models: PD and SAR . . . . . . . . . . . . . . . . . . 88 5.1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Hardness Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Algorithm Design for HABIS . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3.1 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . 93 5.3.2 Health-Aware Wireless Power Transfer System . . . . . . . . . . . 97 5.3.3 Optimal Health-Aware Beamforming (OHAB) . . . . . . . . . . . 98 5.3.4 Approximation Ratio of MREMIC . . . . . . . . . . . . . . . . . . 99 5.3.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4.1 MREMIC for Multi-BS . . . . . . . . . . . . . . . . . . . . . . . 103 5.4.2 User Mobility and Simultaneous Downlink Transmission . . . . . . 104 5.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6 Concluding Remarks and Future Directions 110

    [1] M. Lippi, M. Mamei, S. Mariani, and F. Zambonelli, “Coordinating distributed speaking objects,” in Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS), Dec. 2017.
    [2] M. Endler, J. P. Briot, F. S. E. Silva, V. P. d. Almeida, and E. H. Haeusler, “An approach for real-time stream reasoning for the internet of things,” in Proceedings of IEEE International Conference on Semantic Computing (ICSC), Jan. 2017.
    [3] H. Agrawal, S.-w. Leigh, and P. Maes, “L’evolved: autonomous and ubiquitous utilities as smart agents,” in Proceedings of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), Sep. 2015.
    [4] (2016). AI traffic system in Pittsburgh, [Online]. Available: https://goo.gl/ ybHqB3.
    [5] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of things (SIoT)- when social networks meet the internet of things: concept, architecture and network characterization,” Computer Networks, vol. 56, no. 16, pp. 3594–3608, Nov. 2012.
    [6] A. M. Ortiz, D. Hussein, S. Park, S. N. Han, and N. Crespi, “The cluster between internet of things and social networks: review and research challenges,” IEEE Internet of Things Journal, vol. 1, no. 3, pp. 206–215, Jun. 2014.
    [7] H. Z. Asl, A. Iera, L. Atzori, and G. Morabito, “How often social objects meet each other? analysis of the properties of a social network of IoT devices based on real data,” in Proceedings of IEEE Global Communications Conference (GLOBECOM), Dec. 2013.
    [8] C.-M. Huang, C.-H. Shao, S.-Z. Xu, and H. Zhou, “The social internet of thing (SIoT)- based mobile group handoff architecture and schemes for proximity service,” IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 3, pp. 425–437, Jul. 2017.
    [9] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness management in the social internet of things,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 5, pp. 1253–1266, May 2014.
    [10] H.-S. Liao, P.-Y. Chen, andW.-T. Chen, “An efficient downlink radio resource allocation with carrier aggregation in LTE-advanced networks,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, pp. 2229–2239, Oct. 2014.
    [11] Y. Wang, K. I. Pedersen, T. B. Sorensen, and P. E. Mogensen, “Carrier load balancing and packet scheduling for multi-carrier systems,” IEEE Transactions on Wireless Communications, vol. 9, no. 5, pp. 1780–1789, May 2010.
    [12] Y.-H. Chung and C.-J. Chang, “A balanced resource scheduling scheme with adaptive priority thresholds for OFDMA downlink systems,” IEEE Transactions on Vehicular Technology, vol. 61, no. 3, pp. 1276–1286, Mar. 2012.
    [13] A. Hatoum, R. Langar, N. Aitsaadi, R. Boutaba, and G. Pujolle, “Cluster-based resource management in OFDMA femtocell networks with QoS guarantees,” IEEE Transactions on Vehicular Technology, vol. 63, no. 5, pp. 2378–2391, Jun. 2014.
    [14] H.-L. Chao, C.-K. Chang, and C.-L. Liu, “A novel channel-aware frequency-domain scheduling in LTE uplink,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2013.
    [15] I. C. Wong, O. Oteri, and W. Mccoy, “Optimal resource allocation in uplink SCFDMA systems,” IEEE Transactions on Wireless Communications, vol. 8, no. 5, pp. 2161–2165, May 2009.
    [16] F. Ren, Y. Xu, H. Yang, J. Zhang, and C. Lin, “Frequency domain packet scheduling with stability analysis for 3GPP LTE uplink,” IEEE Transactions on Mobile Computing, vol. 12, no. 12, pp. 2412–2426, Dec. 2013.
    [17] S. Nastic, S. Sehic, D. H. Le, H. L. Truong, and S. Dustdar, “Provisioning softwaredefined IoT cloud systems,” in Proceedings of IEEE International Conference on Future Internet of Things and Cloud (FiCloud), Aug. 2014.
    [18] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: scalable cloud services for the internet of things with CoAP,” in Proceedings of IEEE International Conference on the Internet of Things (IoT), Oct. 2014.
    [19] M. S. Khan, M. S. Islam, and H. Deng, “Design of a reconfigurable RFID sensing tag as a generic sensing platform toward the future internet of things,” IEEE Internet of Things Journal, vol. 1, no. 4, pp. 300–310, Aug. 2014.
    [20] P. Mach and Z. Becvar, “Mobile edge computing: a survey on architecture and computation offloading,” IEEE Communications Surveys Tutorials, vol. 19, no. 3, pp. 1628–1656, thirdquarter 2017.
    [21] W. Vereecken, W. V. Heddeghem, D. Colle, M. Pickavet, and P. Demeester, “Overall ICT footprint and green communication technologies,” in Proceedings of IEEE International Symposium on Communications, Control and Signal Processing (ISCCSP), Mar. 2010.
    [22] F. K. Shaikh, S. Zeadally, and E. Exposito, “Enabling technologies for green internet of things,” IEEE Systems Journal, vol. 11, no. 2, pp. 983–994, Jun. 2017.
    [23] M. White. Companies use AI and IoT to go green, [Online]. Available: https: //goo.gl/VgpBLq.
    [24] O. M. Alia and A. Al-Ajouri, “Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm,” IEEE Sensors Journal, vol. 17, no. 3, pp. 882–896, Feb. 2017.
    [25] Y. Zhao, X. Li, C. Z. Xu, and S. Zhang, “Adaptive random beamforming for MIMO wireless power transfer system,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2018.
    [26] Powercast. Power over distance: RF energy harvesting & wireless power, [Online]. Available: http://www.powercastco.com/.
    [27] Cota. Cota: Real wireless power, [Online]. Available: http://www.ossia.com/cota/.
    [28] M. L. Ku, Y. Han, B. Wang, and K. J. R. Liu, “Joint power waveforming and beamforming for wireless power transfer,” IEEE Transactions on Signal Processing., vol. 65, no. 24, pp. 6409–6422, Dec. 2017.
    [29] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical non-linear energy harvesting model and resource allocation for SWIPT systems,” IEEE Communications Letters, vol. 19, no. 12, pp. 2082–2085, Dec. 2015.
    [30] K. Xiong, B. Wang, and K. J. R. Liu, “Rate-energy region of SWIPT for MIMO broadcasting under nonlinear energy harvesting model,” IEEE Transactions on Wireless Communications, vol. 16, no. 8, pp. 5147–5161, Aug. 2017.
    [31] J. L. Phillips, N. P. Singh, and H. Lai, “Electromagnetic fields and DNA damage,” Pathophysiology : the official journal of the International Society for Pathophysiology, vol. 16 2-3, pp. 79–88, 2009.
    [32] International Commission on Non-Ionizing Radiation Protection (ICNIRP), “ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300ghz),” Health Physics, vol. 76, no. 4, pp. 494–522, 1998.
    [33] F. C. C. (FCC). (Jun. 2001). Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, [Online]. Available: https://goo.gl/ZgqbNy.
    [34] J. Zhiwei, Y. Guozheng, L. Hua, W. Zhiwu, J. Pingping, and S. Yu, “The optimization of wireless power transmission: design and realization,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 8, no. 3, pp. 337–347, 2012.
    [35] L. Hardell and C. Sage, “Biological effects from electromagnetic field exposure and public exposure standards,” Biomedicine and Pharmacotherapy, vol. 62, no. 2, pp. 104–109, 2008.
    [36] M. Otto and K. E. von Mühlendahl, “Electromagnetic fields (EMF): do they play a role in children’s environmental health (CEH)?” International Journal of Hygiene and Environmental Health, vol. 210, no. 5, pp. 635–644, 2007.
    [37] C. Sage and D. O. Carpenter. (2012). Bioinitiative report BIR: A rationale for biologically-based exposure standards for low-intensity electromagnetic radiation, [Online]. Available: www.bioinitiative.org.
    [38] J. Lim, H. G. Myung, K. Oh, and D. J. Goodman, “Proportional fair scheduling of uplink single-carrier FDMA systems,” in Proceedings of Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep. 2006, pp. 1–6.
    [39] S. B. Lee, I. Pefkianakis, A. Meyerson, S. Xu, and S. Lu, “Proportional fair frequency-domain packet scheduling for 3GPP LTE uplink,” in Proceedings of IEEE International Conference on Computer Communications (INFOCOM), Apr. 2009.
    [40] S. N. K. Marwat, Y. Zaki, C. Goerg, T. Weerawardane, and A. Timm-Giel, “Design and performance analysis of bandwidth and QoS aware LTE uplink scheduler in heterogeneous traffic environment,” in Proceedings of International Wireless Communications and Mobile Computing Conference (IWCMC), Aug. 2012.
    [41] R. Ruby, V. C. M. Leung, and D. G. Michelson, “Uplink scheduler for SC-FDMA-based heterogeneous traffic networks with QoS assurance and guaranteed resource utilization,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4780–4796, Oct. 2015.
    [42] W. Sun, E. G. Ström, F. Brännström, K. C. Sou, and Y. Sui, “Radio resource management for D2D-based V2V communication,” IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6636–6650, Aug. 2016.
    [43] Nokia: MEC, [Online]. Available: https://goo.gl/5sZ5t7.
    [44] O. Salman, I. Elhajj, A. Kayssi, and A. Chehab, “Edge computing enabling the internet of things,” in IEEE World Forum on Internet of Things (WF-IoT), Dec. 2015.
    [45] X. Sun and N. Ansari, “EdgeIoT: mobile edge computing for the internet of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29, Dec. 2016.
    [46] M. Shan, G. Chen, D. Luo, X. Zhu, and X.Wu, “Building maximum lifetime shortest path data aggregation trees in wireless sensor networks,” ACM Transactions on Sensor Networks, vol. 11, no. 1, 11:1–11:24, Jul. 2014.
    [47] Y. Wu, S. Fahmy, and N. B. Shroff, “On the construction of a maximum-lifetime data gathering tree in sensor networks: NP-completeness and approximation algorithm,” in Proceedings of IEEE Conference on Computer Communications (INFOCOM), Apr. 2008.
    [48] C. Hua and T. S. P. Yum, “Optimal routing and data aggregation for maximizing lifetime of wireless sensor networks,” IEEE/ACM Transactions on Networking, vol. 16, no. 4, pp. 892–903, Aug. 2008.
    [49] J. Liu, Y. Li, M. Chen,W. Dong, and D. Jin, “Software-defined internet of things for smart urban sensing,” IEEE Communications Magazine, vol. 53, no. 9, pp. 55–63, Sep. 2015.
    [50] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk, and A. Rindos, “SDIoT: a software defined based internet of things framework,” Journal of Ambient Intelligence and Humanized Computing, vol. 6, no. 4, pp. 453–461, Jun. 2015.
    [51] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “Ubiflow: mobility management in urban-scale software defined IoT,” in Proceedings of IEEE Conference on Computer Communications (INFOCOM), Apr. 2015.
    [52] INPUT, [Online]. Available: https://goo.gl/AtZQJa.
    [53] DOMUS - technological district on home automation, [Online]. Available: https://goo.gl/r3atR3.
    [54] Demanes, [Online]. Available: http://www.demanes.eu/.
    [55] Tailor: The smart closet, [Online]. Available: http://www.tailortags.com/.
    [56] G. Yang, C. K. Ho, and Y. L. Guan, “Dynamic channel estimation and power allocation for wireless power beamforming,” in Proceedings of IEEE International Conference on Communications (ICC), Jun. 2014.
    [57] H. Dai, Y. Liu, G. Chen, X. Wu, T. He, A. X. Liu, and H. Ma, “Safe charging for wireless power transfer,” IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3531–3544, Dec. 2017.
    [58] S. Nikoletseas, T. P. Raptis, and C. Raptopoulos, “Low radiation efficient wireless energy transfer in wireless distributed systems,” in Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS), Jun. 2015.
    [59] H. Kawabata, K. Ishibashi, S. Vuppala, and G. T. F. de Abreu, “Robust relay selection for large-scale energy-harvesting IoT networks,” IEEE Internet of Things Journal, vol. 4, no. 2, pp. 384–392, Apr. 2017.
    [60] Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation, 3GPP, TS 36.211, Mar. 2014.
    [61] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the ACM, vol. 45, no. 4, pp. 634–652, Jul. 1998.
    [62] E. Felemban, “Advanced border intrusion detection and surveillance using wireless sensor network technology,” International Journal of Communications, Network and System Sciences, vol. 6, no. 5, pp. 251–259, May 2013.
    [63] Y. Xiao and Y. Zhang, “A critical line based boundary surveillance strategy in wireless sensor networks,” Telecommunication Systems, vol. 52, no. 2, pp. 423–434, Feb. 2013.
    [64] T. Yang, D. Mu, W. Hu, and H. Zhang, “Energy-efficient border intrusion detection using wireless sensors network,” EURASIP Journal on Wireless Communications and Networking, vol. 2014, no. 1, Mar. 2014.
    [65] U. Derigs, “A generalized hungarian method for solving minimum weight perfect matching problems with algebraic objective,” Discrete Applied Mathematics, vol. 1, no. 3, pp. 167–180, 1979.
    [66] Y.-C. Tseng, P.-Y. Chen, and W.-T. Chen, “k-angle object coverage problem in a wireless sensor network,” IEEE Sensors Journal, vol. 12, no. 12, pp. 3408–3416, Dec. 2012.
    [67] H. Zhang, P. Nixon, and S. Dobson, “Partial coverage in homological sensor networks,” in Proceedings of IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Oct. 2009.
    [68] Surveillance map of the University of Maryland, [Online]. Available: https://goo.gl/S46hWQ.
    [69] Surveillance map of the downtown Baltimore, [Online]. Available: https://goo.gl/iKmJps.
    [70] Evolved universal terrestrial radio access (E-UTRA); physical layer procedures, 3GPP, TS 36.213, Jun. 2014.
    [71] Evolved universal terrestrial radio access (E-UTRA); further advancements for EUTRA physical layer aspects, 3GPP, TR 36.814, Mar. 2010.
    [72] Lady bug5 camera, [Online]. Available: https://goo.gl/xZztf1.
    [73] Directional camera, [Online]. Available: https://goo.gl/71qAkk.
    [74] J. Liu and T. Lee, “A framework for performance modeling of wireless sensor networks,” in Proceedings of IEEE International Conference on Communications (ICC), May 2005.
    [75] Gurobi optimizer, [Online]. Available: http://www.gurobi.com/.
    [76] C. H. Wang, J. J. Kuo, D. N. Yang, and W. T. Chen, “Green software-defined internet of things for big data processing in mobile edge networks,” in Proceedings of IEEE International Conference on Communications (ICC), May 2018.
    [77] C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Georgakopoulos, “Sensor search techniques for sensing as a service architecture for the internet of things,” IEEE Sensors Journal, vol. 14, no. 2, pp. 406–420, Feb. 2014.
    [78] D. Hussein, S. Park, S. N. Han, and N. Crespi, “Dynamic social structure of things: a contextual approach in CPSS,” IEEE Internet Computing, vol. 19, no. 3, pp. 12–20, May 2015.
    [79] T. Allard and S. Shekh, “Hierarchical multi-agent distribution planning,” in Proceedings of ACM Australasian Joint Conference on Advances in Artificial Intelligence (AI), Dec. 2012.
    [80] M. Tahir and R. Farrell, “Optimal communication-computation tradeoff for wireless multimedia sensor network lifetime maximization,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2009.
    [81] S. J. Baek, G. de Veciana, and X. Su, “Minimizing energy consumption in largescale sensor networks through distributed data compression and hierarchical aggregation,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 1130–1140, Aug. 2004.
    [82] C. Möbius, W. Dargie, and A. Schill, “Power consumption estimation models for processors, virtual machines, and servers,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6, pp. 1600–1614, Jun. 2014.
    [83] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A power benchmarking framework for network devices,” in Proceedings of ACM International IFIP-TC 6 Networking Conference, May 2009.
    [84] E. Halperin and R. Krauthgamer, “Polylogarithmic inapproximability,” in Proceedings of ACM Symposium on Theory of Computing (STOC), Jun. 2003.
    [85] M. Lippi, M. Mamei, S. Mariani, and F. Zambonelli, “An argumentation-based perspective over the social IoT,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2537–2547, Aug. 2018.
    [86] Q. Wang, M. Hempstead, and W. Yang, “A realistic power consumption model for wireless sensor network devices,” in Proceedings of IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON), Sep. 2006.
    [87] J. Moy, OSPF version 2, RFC 2178, Internet Engineering Task Force, Jul. 1998.
    [88] N. Garg, G. Konjevod, and R. Ravi, “A polylogarithmic approximation algorithm for the group steiner tree problem,” Journal of Algorithms, vol. 37, no. 1, pp. 66–84, 2000.
    [89] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp. 54–61, Apr. 2017.
    [90] The internet topology zoo, [Online]. Available: http://www.topology- zoo.org/dataset.html.
    [91] S.Wang, X. Zhang, Y. Zhang, L.Wang, J. Yang, andW.Wang, “A survey on mobile edge networks: convergence of computing, caching and communications,” IEEE Access, vol. 5, no. 99, pp. 6757–6779, Mar. 2017.
    [92] Camera map in baltimore, [Online]. Available: https://catalog.data.gov/dataset/cctv-cameras.
    [93] C. H. Wang, D. N. Yang, and W. T. Chen, “Scheduling for multi-camera surveillance in LTE networks,” in Proceedings of IEEE Global Communications Conference (GLOBECOM), Dec. 2015.
    [94] T. M. Nam, N. H. Thanh, N. Q. Thu, H. T. Hieu, and S. Covaci, “Energy-aware routing based on power profile of devices in data center networks using SDN,” in Proceedings of IEEE International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Jun. 2015.
    [95] J. Markkula and J. Haapola, “LTE and hybrid sensor-LTE network performances in smart grid demand response scenarios,” in Proceedings of IEEE International Conference on Smart Grid Communications (SmartGridComm), Oct. 2013.
    [96] Y.Wang, D.Wang, X. Zhang, J. Chen, and Y. Li, “Energy-efficient image compressive transmission for wireless camera networks,” IEEE Sensors Journal, vol. 16, no. 10, pp. 3875–3886, May 2016.
    [97] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz, “Napsac: design and implementation of a power-proportional web cluster,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 1, pp. 102–108, Jan. 2011.
    [98] S. He, D. H. Shin, J. Zhang, J. Chen, and Y. Sun, “Full-view area coverage in camera sensor networks: dimension reduction and near-optimal solutions,” IEEE Transactions on Vehicular Technology, vol. 65, no. 9, pp. 7448–7461, Sep. 2016.
    [99] M. Cardei, M. T. Thai, Y. Li, andW.Wu, “Energy-efficient target coverage in wireless sensor networks,” in Proceedings of IEEE Conference on Computer Communications (INFOCOM), Mar. 2005.
    [100] A. Reinhardt, M. Hollick, and R. Steinmetz, “Stream-oriented lossless packet compression in wireless sensor networks,” in Proceedings of IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Jun. 2009.
    [101] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers: measurement study of google+, ichat, and skype,” IEEE/ACM Transactions on Networking, vol. 22, no. 3, pp. 826–839, Jun. 2014.
    [102] J. M. Liang, J. J. Chen, H. H. Cheng, and Y. C. Tseng, “An energy-efficient sleep scheduling with QoS consideration in 3GPP LTE-advanced networks for internet of things,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 1, pp. 13–22, Mar. 2013.
    [103] U. Bakshi and A. Bakshi, Antenna And Wave Propagation. Technical Publications, Jan. 2009.
    [104] Semtech. (2007). Calculating radiated power and field strength for conducted power measurements, [Online]. Available: https://goo.gl/GBg2sU.
    [105] P. Gajsek, W. D. Hurt, J. M. Ziriax, and P. A. Mason, “Parametric dependence of SAR on permittivity values in a man model,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 10, pp. 1169–1177, Oct. 2001.
    [106] P. Staebler, Human Exposure to Electromagnetic Fields: From Extremely Low Frequency (ELF) to Radiofrequency. John Wiley & Sons, May 2017.
    [107] Imotion. Biometric research, simplified, [Online]. Available: https://imotions.com/.
    [108] Technical specification group GSM/EDGE radio access network; cellular system support for ultra low complexity and low throughput internet of things (Release 13), 3GPP TR 45.820 V2.1.0 (2015-08), [Online]. Available: http://www.3gpp.org/ftp/Specs/archive/45_series/45.820/.
    [109] S. Khuller, A. Moss, and J. Naor, “The budgeted maximum coverage problem,”Information Processing Letters, vol. 70, no. 1, pp. 39–45, 1999.
    [110] D. Krewski, C. V. Byus, B.W. Glickman,W. G. Lotz, R. Mandeville, M. L. McBride, F. S. Prato, and D. F. Weaver, “Potential health risks of radiofrequency fields from wireless telecommunication devices,” Journal of Toxicology and Environmental Health, Part B, vol. 4, no. 1, pp. 1–143, 2001.
    [111] S. Timotheou, I. Krikidis, G. Zheng, and B. Ottersten, “Beamforming for MISO interference channels with Qos and RF energy transfer,” IEEE Transactions on Wireless Communications, vol. 13, no. 5, pp. 2646–2658, May 2014.
    [112] J. Xu, L. Liu, and R. Zhang, “Multiuser MISO beamforming for simultaneous wireless information and power transfer,” IEEE Transactions on Signal Processing, vol. 62, no. 18, pp. 4798–4810, Sep. 2014.
    [113] IBM. CPLEX optimizer, [Online]. Available: https://www.ibm.com/analytics/cplex-optimizer.
    [114] A. Krause and D. Golovin, “Submodular function maximization,” Tractability: Practical Approaches to Hard Problems, Feb. 2014.
    [115] W. Bai, R. Iyer, K. Wei, and J. Bilmes, “Algorithms for optimizing the ratio of submodular functions,” in Proceedings of International Conference on Machine Learning (ICML), Jun. 2016.
    [116] D. W. K. Ng, E. S. Lo, and R. Schober, “Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 3166–3184, May 2016.
    [117] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, 2014.
    [118] M. Cameron, Physical Agents in Rehabilitation: From Research to Practice, ser. Saunders W.B. Elsevier/Saunders, 2012.
    [119] W. Bauer and G. Westfall, University Physics with Modern Physics. McGraw-Hill Education, 2011. [Online]. Available: https://books.google.com.tw/books?id=VL1iewAACAAJ.

    QR CODE