研究生: |
曾冠程 Tseng, Kuan-Chen |
---|---|
論文名稱: |
應用雙目標簡化粒子群演算法 結合理牌區域搜尋法及快速菁英挑選法 求解多目標霧計算任務分配問題 Fog Computing Task Scheduling Optimization Based on Bi-Objective Simplified Swarm Optimization With Card Sorting Local Search and Fast Elite Selecting |
指導教授: |
葉維彰
Yeh, Wei-Chang |
口試委員: |
朱大中
Chu, Ta-Chung 賴鵬仁 Peng, Jen-Lai |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 霧計算 、任務分配 、區域搜尋 、簡化粒子群演算法 、多目標 、非支配排序 |
外文關鍵詞: | Fog computing, Task scheduling, Local search, SSO, Multi-objective, Non-dominated sorting |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網路社會的蓬勃發展,資料的傳輸量日益漸增,網路綿密交織,各式各樣的物聯網裝置相互連結,點連著點形成線、線交線形成面、面與面形成網。如此龐大複雜的網路使的傳統中心化的雲計算架構無法負荷,資料傳遞延遲隨規模成長。因此越來越多的學者開始研究去中心化的網路架構概念──霧計算。
在霧計算的應用場景中,許多應用對於時間延遲的容忍度非常低。而演算法又會因問題規模而使得模擬時間增長,使得任務分配無法在可容忍時間內完成。然而過往的研究中,尚無學者對此提出相關解決方案。因此本研究針對演算法時間複雜度以及演算法求解效率兩方面著手,分別提出快速菁英挑選法(Fast Elite Selecting)以及理牌搜尋演算法 (Card Sorting Local Search)。 本研究提出快速菁英挑選法取代快速非支配排序(Fast Non-dominated Sorting)使得篩選非支配解之時間複雜度從O(N^2 )降至 O(〖N_F〗^2 )。另一新提出的區域搜尋法──理牌搜尋演算法根據霧計算任務分配問題特性,加強雙目標簡化群體演算法(Bi-Objective Simplified Swarm Optimization)之區域搜尋能力。結合雙目標簡化群體演算法、快速菁英挑選法、理牌搜尋演算法及CPU平行處理的技巧,形成本篇研究針對霧計算任務分配所提出的菁英簡化群體演算法(EliteSSO)策略。
本研究的實驗結果顯示,本研究所提的策略在時間上及求解品質上皆勝過其他演算法如:NSGA-II以及MOPSO。其優勢隨著問題的規模及複雜度的增加而逐漸擴大。
With the dramatic growth of data volume, the cloud computing structure has faced a severe difficulty, the latency. In order to deal with this problem, researchers have proposed the fog computing structure, which can successfully release the computation loads from one data center of cloud to multiple local fog devices. Hence, the tasks will be processed at the local fog device and avoid transmitting to data center which is not cost-effective, and the results can be transmitted to the users immediately. In this way, fog computing not only shorten the latency but achieved cost reduction.
In fog computing paradigm, many applications are time sensitive. However, most of the research so far haven’t presented a time-efficient and well-customized algorithm especially for fog computing task scheduling problem. Hence, we focused on time-efficiency issue and proposed a novel local search mechanism, Card Sorting Local Search (CSLS), which effectively improved the non-dominated solutions found by Bi-objective Simplified Swarm Optimization (BSSO). Moreover, we also proposed a one-front non-dominated sorting method, Fast Elite Selecting (FES), reduce the time complexity of non-dominated sorting technique. We Combine BSSO, CSLS and FES, and proposed a new algorithm for this study, Elite Swarm Simplified Optimization (EliteSSO), to overcome difficulties in time-efficiency and number of non-dominated solutions especially in large scale problems like fog computing task scheduling problem.
In the end of this work, computational results demonstrated that the proposed algorithm is time-efficiency and significantly outperformed other algorithms.
1. Yannuzzi, M., et al. Key ingredients in an IoT recipe: Fog Computing, Cloud computing, and more Fog Computing. in 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). 2014. IEEE.
2. Perera, C., et al., Fog computing for sustainable smart cities: A survey. 2017. 50(3): p. 32.
3. Bonomi, F., et al. Fog computing and its role in the internet of things. in Proceedings of the first edition of the MCC workshop on Mobile cloud computing. 2012. ACM.
4. Matt, C.J.B. and I.S. Engineering, Fog Computing. 2018: p. 1-5.
5. Bitam, S., S. Zeadally, and A.J.E.I.S. Mellouk, Fog computing job scheduling optimization based on bees swarm. 2018. 12(4): p. 373-397.
6. Vaquero, L.M. and L.J.A.S.C.C.R. Rodero-Merino, Finding your way in the fog: Towards a comprehensive definition of fog computing. 2014. 44(5): p. 27-32.
7. Chiang, M. and T.J.I.I.o.T.J. Zhang, Fog and IoT: An overview of research opportunities. 2016. 3(6): p. 854-864.
8. Sarkar, S. and S.J.I.N. Misra, Theoretical modelling of fog computing: A green computing paradigm to support IoT applications. 2016. 5(2): p. 23-29.
9. Kui-kui, H., X. Zai-peng, and L.J.C.S. Xin, Fog Computing Task Scheduling Strategy Based on Improved Genetic Algorithm. 2018(4): p. 22.
10. Binh, H.T.T., et al. An Evolutionary Algorithm for Solving Task Scheduling Problem in Cloud-Fog Computing Environment. in Proceedings of the Ninth International Symposium on Information and Communication Technology. 2018. ACM.
11. Deng, R., et al., Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. 2016. 3(6): p. 1171-1181.
12. He, J., et al., Time synchronization in WSNs: A maximum-value-based consensus approach. 2014. 59(3): p. 660-675.
13. Li, D. and X. Sun, Nonlinear integer programming. Vol. 84. 2006: Springer Science & Business Media.
14. Kuhn, H.W.J.N.r.l.q., The Hungarian method for the assignment problem. 1955. 2(1‐2): p. 83-97.
15. Fieldsend, J.E. and S. Singh, A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. 2002.
16. Coello, C.A.C., G.T. Pulido, and M.S.J.I.T.o.e.c. Lechuga, Handling multiple objectives with particle swarm optimization. 2004. 8(3): p. 256-279.
17. Zhou, A., et al., Multiobjective evolutionary algorithms: A survey of the state of the art. 2011. 1(1): p. 32-49.
18. Liu, J., et al., Job scheduling model for cloud computing based on multi-objective genetic algorithm. 2013. 10(1): p. 134.
19. Jena, R.J.P.C.S., Multi objective task scheduling in cloud environment using nested PSO framework. 2015. 57: p. 1219-1227.
20. Fard, H.M., et al. A multi-objective approach for workflow scheduling in heterogeneous environments. in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on. 2012. IEEE.
21. Doğan, A. and F.J.T.C.J. Özgüner, Biobjective scheduling algorithms for execution time–reliability trade-off in heterogeneous computing systems. 2005. 48(3): p. 300-314.
22. Yin, Y., Multi-objective Task Scheduling in Cloud Environment Using Multi-objective Simplified Swarm Optimization. 2018, National Tsin Hua University.
23. Yeh, W.-C.J.I.t.o.s., man,, c.-p.A. systems, and humans, Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization. 2011. 42(1): p. 250-261.
24. Yeh, W.-C.J.I.S., A new exact solution algorithm for a novel generalized redundancy allocation problem. 2017. 408: p. 182-197.
25. Yeh, W.-C.J.K.-B.S., Orthogonal simplified swarm optimization for the series–parallel redundancy allocation problem with a mix of components. 2014. 64: p. 1-12.
26. Yeh, W.-C.J.I.S., Novel swarm optimization for mining classification rules on thyroid gland data. 2012. 197: p. 65-76.
27. Yeh, W.-C.J.E.S.w.A., A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. 2009. 36(5): p. 9192-9200.
28. Huang, C.-L. and W.-C.J.a.p.a. Yeh, A new SSO-based Algorithm for the Bi-Objective Time-constrained task Scheduling Problem in Cloud Computing Services. 2019.
29. Tasiopoulos, A., et al., FogSpot: Spot Pricing for Application Provisioning in Edge/Fog Computing. 2019.
30. Li, X. A non-dominated sorting particle swarm optimizer for multiobjective optimization. in Genetic and Evolutionary Computation Conference. 2003. Springer.
31. Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. 2002. 6(2): p. 182-197.
32. Czyzżak, P. and A.J.J.o.M.C.D.A. Jaszkiewicz, Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization. 1998. 7(1): p. 34-47.
33. Schott, J.R., Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. 1995, AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH.
34. Van Veldhuizen, D.A., Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. 1999, AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEERING.