研究生: |
梁元彰 |
---|---|
論文名稱: |
磊晶BaTiO3/LaNiO3人工超晶格特性之研究 |
指導教授: |
吳泰伯
李信義 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 158 |
中文關鍵詞: | 人工超晶格 、X光反射率 、界面粗糙度 、成長機制 |
外文關鍵詞: | superlattice, Xray reflectivity, interface roughness, growth mode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗成功的利用磁控濺鍍法製造出磊晶BaTiO3/LaNiO3(BTO/LNO)人工超晶格薄膜於單晶SrTiO3 基板上。藉由X光反射率以及X光繞射的量測證實了超晶格結構的形成。由 X光繞射分析顯示在超晶格中的BTO層其c軸的晶格常數會因為界面處的應變而拉長,並造成介電常數的顯著提升。另外,in-plane X光繞射分析亦顯示當BTO/LNO人工超晶格薄膜的周期小於20奈米時,超晶格中的BTO層會有相同程度的應變鬆弛。藉由X光反射率以及X光繞射的量測可發現幾乎固定的界面粗糙度存在於BTO與LNO層之間。因此人工超晶格薄膜具有相同程度的介電常數提升此外BTO/LNO 的界面具有高導電的特性。利用in-situ 鍍膜方式配和同步輻射光源成功的以實驗方式得到了周期為6奈米的人工超晶格薄膜其有效的臨界厚度約為60-66奈米,此實驗值亦相當接近理論估計值。當整體的超晶格薄膜厚度大於此臨界值,晶格會有應變鬆弛產生。此外in-situ的實驗觀察亦顯示出存在於超晶格內的應變會對於超晶格薄膜的顯微結構演化有著重大的影響。
Artificial superlattices consisting of ferroelectric BaTiO3 (BTO) and conductive LaNiO3 (LNO) sublayers were epitaxially grown on SrTiO3 (001) single crystal substrates by a dual-gun rf magnetron sputtering system. The formation of superlattice structure was confirmed from the x-ray reflectivity curves and (0 0 L) Bragg reflection of x-ray. A partial but nearly constant relaxation of in-plane strain in the superlattices was observed, even though the sublayer thickness is below the critical value for the generation of misfit dislocations. X-ray reflectivity measurement reveals that the superlattices with stacking period below 20nm have about the same interface roughness of BTO/LNO. Consequently, nearly the same extent of dielectric enhancement results from the strained BTO layer, along with a highly conductive interface zone in the superlattiecs. On the other hand, in-situ, real-time synchrotron x-ray scattering experiment confirms the occurrence of lattice strain relaxation in the superlattice with stacking period below critical value (BTO-3nm/LNO-3nm), and the experimentally evaluated total thickness of the superlattice for the onset of strain relief is satisfactorily close to the prediction from theoretical calculation. Moreover, observation of roughness scaling behavior in the initial growth of epitaxial BTO/LNO superlattices indicates that the strain plays an important role in the evolution of microstructure in superlattices.
References
1. J. Zhang, D. Cui, H. Lu, Z. Chen, Y. Zhou, L. Li, G. Yang, S. Martin and P. Hess ”Structural Behavior of Thin BaTiO3 Film Grown at Different Conditions by Pulsed Laser Deposition” Jpn. J. Appl. Phys. 362, 76 (1997).
.
2. C. S. Hsi, F.-Y. Hsiao, N.-C. Wu and M. C. Wang “Dielectric Properties of Nanocrystalline Barium Titanate Thin Films Deposited by RF Magnetron Sputtering” Jpn. J. Appl. Phys. 42, 544 (2003).
3. C. A. T. Salama, and E. Siciunas, “Characteristics of rf Sputtered Barium Titanate Films on Silicon” J. Vac. Sci. Technol. 9, 91(1972).
4. I. H. Pratt, and S. Firestone, “Fabrication of rf-Sputtered Barium Titanate Thin Films” J. Vac. Sci. Technol. 8, 256 (1971).
5. H. K. awano, K. Morii, and Y. Nakayama, “Microstructural and dielectric properties of BaTiO3 thin films prepared by atom beam sputtering”Mater. Lett. 12, 252(1991).
6. Q. X. Jia, L.H. Chang, and W. A. Anderson, “Surface and interface properties of ferroelectric BaTiO3 thin films on Si using RuO2 as an electrode” J. Mater. Res. 9, 2561(1994).
7. Q. X. Jia, Z. Q. Shi and W. A. Anderson, “BaTiO3 thin film capacitors deposited by r.f. magnetron sputtering” Thin Solid Films 209, 230(1991).
8. H. Nakazawa, H. Yamane,and T. Hirai, “Metalorganic Chemical Vapor Deposition of BaTiO3 Films on MgO(100)” Jpn. J. Appl. Phys. 30, 2200(1991).
9. Y. S. Yoon, W. N. Kang, H. S. Shin, and S. S. Yom, “Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition” J. Appl. Phys. 73,1547(1993).
10. K. Iijima, T. Tersahima, K. Yamamoto, K. Hirata, and Y. Bando, “Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation” Appl. Phys. Lett. 56, 527(1990).
11. M. Kuwabara, S. Takahashi, and T. Kuroda, “Preparation of ferroelectric BaTiO3 thin films on polycrystalline BaPbO3 substrates by sol-gel processing and their electrical properties” Appl. Phys. Lett. 62, 3372(1993).
12. G. M. Davis, and M. C. Gower, “Epitaxial growth of thin films of BaTiO3 using excimer laser ablation” Appl. Phys. Lett. 55, 112(1989).
13. M. G. Norton, and C.B. Carter, “Observation of the early stages of heteroepitactic growth of BaTiO 3 thin-films” J. Mater. Res. 5, 2762(1990).
14. K. Nashimoto, D. K. Fork, F. A. Ponce, and J.C. Tramontana, “Characteristics of BaTiO3 Films Prepared by Pulsed Laser Deposition” Jpn. J.Appl. Phys. 32,5656(1993).
15. J. Zhang, Z. H. Chen, D. F. Cui, H. B. Lu, Y. L. Zhou, L. Lin, G. Z. Yong, N. Jiang, and J. M. Hao, “Heteroepitaxial growth of a c-axis-oriented BaTiO3/YBa2Cu3O7 bilayer structure by pulsed laser ablation” Appl. Phys. Lett. 66, 2069(1995).
16. W. J. Lin, T. Y. Tseng, H. B. Lu, S. L. Tu, S. J. Yang, and I. N. Lin, “Growth and ferroelectricity of epitaxial-like BaTiO3 films on single-crystal MgO, SrTiO3, and silicon substrates synthesized by pulsed laser deposition” J. Appl. Phys. 77, 6466(1995).
17. J. Zhang, D. Cui, H. Lu, Z. Chen, Y. Zhou, L. Li, G. Yang, S. Martine, and P. Hess, “Structural Behavior of Thin BaTiO3 Film Grown at Different Conditions by Pulsed Laser Deposition” Jpn. J. Appl. Phys. 36, 276(1997).
18. H. B. Lu, N.Wang, W. Z. Chen, F. Chen, T. Zhao, H. Y. Peng, S. T. Lee, and G. Z. Yang, “Laser molecular beam epitaxy of BaTiO3 and SrTiO3 ultra thin films” J. Cryst. Growth. 212, 173(2000).
19. G. H. Lee, M. Yoshimoto, T. Ohnishi, K. Sasaki, and H. Koinuma, “Epitaxial BaTiO3 thin films grown in unit-cell layer-by-layer mode by laser molecular beam epitaxy” Materials Sci. and Eng. B 56, 213 (1998).
20. T. Terashima, Y.Bando, K. Iijima, K. Hirata, K. Hayashi, K.Kamigaki, and H. Terauchi, “Reflection high-energy electron diffraction oscillations during epitaxial growth of high-temperature superconducting oxides” Phys. Rev. Lett. 65, 2684(1990).
21. Y. Watanaabe, Y. Matsumoto, H. Kunitomo, M. Tanamura, and E.Nishimoto, “Crystallographic and Electrical Properties of Epitaxial BaTiO3 Film Grown on Conductive and Insulating Perovskite Oxides” Jpn. J. Appl. Phys. 33, 5182(1994).
22. H. Terauchi, Y. watanabe, H. Kasatani, K. Kamigasaki, Y.Yano,T.Terashima, and Y. Bando, J. Phys. Soc. Jpn. 61, 2194(1992).
23. K. Wasa, and S. Hayakawa, “Some features of magnetron sputtering” Thin Solid Films 52, 31 (1978).
24. K. Fujimoto, Y. Kobayashi, and K. Kubota, “Growth of BaTiO3---SrTiO3 thin films by r.f. magnetron sputtering” Thin Solid Films 169, 249 (1989).
25. T. Yasumoto, N. Yanase, K. Abe, and T. Kawakubo, “Epitaxial Growth of BaTiO3 Thin Films by High Gas Pressure Sputtering” Jpn. J. Appl. Phys. 39, 5369(2000).
26. M. Matsuoka, K. Hoshino, and K. Ono, “Low-temperature epitaxial growth of BaTiO3 films by radio-frequency-mode electron cyclotron resonance sputtering” J. Appl. Phys. 76, 1768(1994).
27. A.Word, B. Post, and E. Banks, J.Am.Chem.Soc.70, 4911(1957).
28. R. Ramesh, W. K. Chan, H. Gilchrist, T. Sands, J. M. Tarascon, and V. G. Keramidas, “Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures” Appl. Phys. Lett. 61, 1537(1992).
29. R. Ramesh, H. Gilchrist, T. Sands, J. M. Tarascon, and V. G. Keramidas, “Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O heterostructures on silicon via template growth” Appl. Phys. Lett. 63, 3592(1993).
30. Q. Gan, R. A. Rao, and C. B. Eom, “Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films” Appl. Phys. Lett.72, 978(1998).
31. M. S. Chen, T. B. Wu, and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films” Appl. Phys. Lett. 68, 1430(1996).
32. C. Guerrero, F. Sanchez, C. Ferrater, J. Rddan, M. V.Garcia, and M. Varela, “Pulsed laser deposition of epitaxial PbZrxTi1−xO3 ferroelectric capacitors with LaNiO3 and SrRuO3 electrodes” Appl. Surf. Sci.168, 219(2000).
33. M. S. Chen, J. M. Wu, and T. B. Wu, “Effects of (100)-Textured LaNiO3 Electrode on Crystallization and Properties of Sol-Gel-Derived Pb(Zr0.53Ti0.47)O3 Thin Films” Jpn. J. Appl. Phys. 34, 4870(1995).
34. C. M. Wu, and T. B. Wu, “Effects of LaNiO3 Conductive Buffer Layer on The Structural and Electrical Characteristics of Ba0.4Sr0.6TiO3 Thin Films Prepared by RF Magnetron Sputtering” Jpn. J. Appl. Phys. 36, 1164(1997).
35. T. F. Tseng, K. S. Lin, T. B. Wu, and I. N. Lin, “Effect of LaNiO3/Pt double layers on the characteristics of (PbxLa1 – x)(ZryTi1 – y)O3 thin films” Appl. Phys. Lett. 68, 2505 (1996).
36. A. Li, C. Ge, P. Lu, D. Wu, and S. Xiong, “Fabrication and electrical properties of sol-gel derived BaTiO3 films with metallic LaNiO3 electrode”Appl. Phys. Lett. 70, 1616 (1997).
37. K. M. Satyalaskshmi, and R. M. Mallya, “Epitaxial metallic LaNiO3 thin films grown by pulsed laser deposition” Appl. Phys. Lett. 62, 1233 (1993).
38. C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, and T. B. Wu, “Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3” Appl. Phys. Lett. 66, 2643(1995).
39. K. V. R. Prasad, K. B. R.Varma, and A. R. Raju, “Growth and ferroelectric properties of Bi2VO5.5 thin films with metallic LaNiO3 electrodes” Appl. Phys. Lett. 63, 1898(1993).
40. P. Chen, S. Y. Xu, W. Z. Zhou, C. K. Ong, and D. F. Cui, “In situ reflection high-energy electron diffraction observation of epitaxial LaNiO3 thin films” J. Appl. Phys. 85, 3000 (1995).
41. W. B. Wu, K. H. Wong, and P. W. Chan, “Epitaxial growth of a-axis oriented YBa2Cu3O7−y/LaNiO3 heterostructures on (100) SrTiO3 by pulsed laser deposition” Physica C 297, 247(1998).
42. N. Wakiya, T. Azuma, K. Shinozaki, N. Mizutani, “Low-temperature epitaxial growth of conductive LaNiO3 thin films by RF magnetron sputtering” Thin Solid Films 410, 114 (2002).
43. R. A. Mckee, F. J. Walker, and M. F. Chisholm, “Crystalline Oxides on Silicon: The First Five Monolayers” Phys. Rev. Lett. 81, 3014(1998).
44. J. Im, O. Auciello, P. K. Baumann, S. K. treiffer, D. Y. Kaufman, and A. R. Krauss, “Composition-control of magnetron-sputter-deposited (BaxSr1–x)Ti1 + yO3 + z thin films for voltage tunable devices” Appl. Phys. Lett. 76, 625(2000).
45. B. H. Park, Y. Gim, Y. Fan, Q. X. Jia, and P. Lu, “High nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates” Appl. Phys. Lett. 77, 2587(2000).
46. W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchefer, D. B. Chrisey, and J. S. Horwitz, “Microwave properties of tetragonally distorted (Ba0.5Sr0.5)TiO3 thin films” Appl. Phys. Lett. 76, 1185(2000).
47. L. A. Knauss, J. M. Pond, J. S. Horwitz, D. B. Chrisey, C. H. Mueller, and R. Treece, “The effect of annealing on the structure and dielectric properties of BaxSr1 – xTiO3 ferroelectric thin films” Appl. Phys. Lett. 69, 25 (1996).
48. W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchefer, C. M. Gilmore, and D. B. Chrisey, “The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films” Appl. Phys. Lett. 74, 1033 (1999).
49. B. H. Park, E. J. Peterson, Q. X. Jia, J. Lee, X. Zeng, W. Si, and X. X. Xi, “Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films” Appl. Phys. Lett. 78, 533 (2001).
50. K. C. Li, W. Si, P. L. Wang, Y. Xuan, B. T. Liu, and X. X. Xi, “Dielectric properties of SrTiO3 thin films grown on various perovskite electrodes by pulsed laser deposition” Mater. Sci. Eng. B 56, 218(2002).
51. D. P. Vijay, S. B. Desu, M. Nagata, X. Zhang, T. C. Chen, Mater. Rec. Soc. Symp. Proc. 361, 3(1995).
52. H. Tabata, H. Tanaka, T. Kawai, and M. Okuyama, “Strained SrTiO3/BaTiO3 Superlattices Formed by Laser Ablation Technique and Their High Dielectric Properties” Jpn. J. Appl. Phys. 34, 544(1995).
53. H. Tabata, H. Tanaka, and T. Kawai, “Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties” Appl. Phys. Lett. 65,1970(1994).
54. J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, “Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices” Appl. Phys. Lett. 80, 3581(2002).
55. L. Kim, D. Jung, J. Kim, Y. S. Kim, and J. Lee, “Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity”Appl. Phys. Lett. 82, 2118(2003).
56. Z. Wang, T. Y. asuda, S. Hatatani, and S. Oda, “Enhanced Dielectric Properties in SrTiO3/BaTiO3 Strained Superlattice Structures Prepared by Atomic-Layer Metalorganic Chemical Vapor Deposition” Jpn. J. Appl. Phys. 38, 6817(1999).
57. Z. Wang, and S. Oda, “Electrical Properties of SrTiO[sub 3]/BaTiO[sub 3] Strained Superlattice Films Prepared by Atomic Layer Metallorganic Chemical Vapor Deposition”J. Electrochem. Society 147, 4615(2000).
58. T.Tsurumi, T.Ichikawa, T.Harigai, H.Kakemoto, and S.Wada, “Dielectric and optical properties of BaTiO3/SrTiO3 and BaTiO3/BaZrO3 superlattices” J.Appl.Phys. 91, 2284 (2002).
59. J. Kim, L. Kim, D. Jung, Y. S. Kim, I. W. Kim, J. H. J, and J. Lee, “Thickness Dependent Dielectric Property of BaTiO3/SrTiO3 Artificial Lattice” Jpn. J. Appl. Phys. 42, 5901(2003).
60. G. Koebernik, W. Haessler, R. Pantou, and F. Weiss, “Thickness dependence on the dielectric properties of BaTiO3/SrTiO3-multilayers” Thin Solid Films 449, 80 (2004).
61. T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata, and T. Kawai, “Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with "asymmetric" structure” J. Appl. Phys. 91, 2290 (2002).
62. O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata, and T. Kawai, “Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition”Appl. Phys. Lett. 77, 3257 (2000).
63. J. B. Neaton, and K. M. Rabe, “Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices” Appl. Phys. Lett. 82, 1586 (2003).
64. F. Q. Tong, W. X. Yu, F. Liu, Y. Zuo, and X. Ge, “Microstructural study of BaTiO3/SrTiO3 superlattice” Mater. Sci. Eng. B 98, 6 (2003).
65. V. Wang, H. B. Lu, W. Z. Chen, T. Zhao, F. Chen, H. Y. Peng, S. T. Lee, and G. Z. Yang, “Morphology and microstructure of BaTiO3/SrTiO3 superlattices grown on SrTiO3 by laser molecular-beam epitaxy” Appl. Phys. Lett. 75, 3464 (1999).
66. A. Visinoiu, M. Alexe, H. N. Lee, D. N. Zakharov, A. Pignolet, D. Hesse, and U. Gosele, “Initial growth stages of epitaxial BaTiO3 films on vicinal SrTiO3 (001) substrate surfaces” J. Appl. Phys. 91, 10157 (2002).
67. H. Tabata, and T. Kawai,“Dielectric properties of strained (Sr,Ca)TiO3/(Ba,Sr)TiO3 artificial lattices” Appl. Phys. Lett. 70, 321(1997).
68. A. Shibuya, M. Noda, M. Okuyama, H. Fujisawa, and M. Shimizu, “Natural-superlattice-structured Bi4Ti3O12–SrBi4Ti4O15 ferroelectric thin films” Appl. Phys. Lett. 82, 784(2003).
69. I. Kanno, S. Hayashi, R. Takayama, and T. Hirao, “Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering” Appl. Phys. Lett. 68, 328 (1996).
70. A. Erbil, Y. Kim, and R. A. Gerjardt, “Giant Permittivity in Epitaxial Ferroelectric Heterostructures” Phys. Rev. Lett. 77, 1628(1996).
71. K. H. Yoo, J. H. Shin, J. H. Park, an D. H. Kang, “Stacking effects on dielectric properties of sol-gel derived Pb(Zr0.53Ti0.47)O3/PbTiO3 thin films” J. Appl. Phys. 83, 3626(1998).
72. B. D. Qu, M. Evstigneev, D. J. Johnson, and R. H. Prince, “Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition” Appl. Phys. Lett. 72, 1394(1998).
73. M. H. Corbett, R. M. Bowman, and J.M. Gregg, “Enhancement of dielectric constant and associated coupling of polarization behavior in thin film relaxor superlattices” Appl. Phys. Lett. 79, 815(2001).
74. C. Wang, Q. F. Fang, Z. G. Zhu, A. Q. Jiang, S. Y. Wang, B. L. Cheng, and Z. H. Chen, “Dielectric properties of Pb(Zr20Ti80)O3/Pb(Zr80Ti20)O3 multilayered thin films prepared by rf magnetron sputtering”Appl. Phys. Lett. 82, 2880(2003).
75. D. Fuchs, M. Adam, P. Schweiss, and R. Schneider, “Dielectric tunability of coherently strained LaAlO3/SrTiO3 superlattices” J. Appl. Phys. 91, 5288(2002).
76. E. D. Specht, H. M. Christen, D. P. Norton, and L. A. Boatner, “X-Ray Diffraction Measurement of the Effect of Layer Thickness on the Ferroelectric Transition in Epitaxial KTaO3/KNbO3 Multilayers” Phys. Rev. Lett.80, 4317(1998).
77. H. M. Christen, E. D. Specht, D. P. Norton, M. F. Chisholm, and L. A. Boatner, “Long-range ferroelectric interactions in KTaO3/KNbO3 superlattice structures” Appl. Phys. Lett.72, 2535(1998).
78. H.You, R. P. Chiarello, H. K. Kim, and K. G. Vandervoort, “X-ray reflectivity and scanning-tunneling-microscope study of kinetic roughening of sputter-deposited gold films during growth” Phy. Rev. Lett. 70, 2900 (1993).
79. S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces” Phys. Rev. B 38, 2297(1988).
80. M. Alvisi, A. Rizzo, L. Tapfer, L. Vasanelli, “X-ray reflectivity analysis of thin TiN and TiOxNy films deposited by dual-ion-beam sputtering on (100)Si substrates” Thin Solid Films 298, 130(1997).
81. T. V. C. Rao, and M. K. Sanyal, “The effect of growth defects on the X-ray reflectivity of multilayer systems” Appl. Suf. Sci. 74, 315(1994).
82. A. Logothetidis, S. Stergioudis, and G. Patsalas, “Oxidation and structural changes in fcc TiNx thin films studied with X-ray reflectivity” Surf. Coat. Technol. 100, 295 (1998).
83. J. D. Shindler, and R. M. Suter, Rev. Sci. Instrum.63, 5343(1992).
84. L. G. Parratt, “ Surface of solids by total reflection of X-rays” Phys. Rev. 95, 359(1954).
85. D. H. Bilderback, Proc. SPIE. 315, 90(1981).
86. H. Chen , and S. M. Heald, “Concentration profiling using x-ray reflectivity: Application to Cu-Al interfaces” J. Appl. Phys. 66, 1793(1989).
87. C. A. Lucas, P. D. Hatton, S. Bates, T. W. Ryan, S. Miles, and B. K. Tanner, “Characterization of nanometer-scale epitaxial structures by grazing-incidence x-ray diffraction and specular reflectivity” J. Appl. Phys. 63, 1936(1988).
88. S. F. Yoon, P. Y. Lui, and H. Q. Zhang, “Characterization of solid source MBE-grown In0.48Ga0.52P/In0.2Ga0.8As/GaAs structures using X-ray reflectivity technique” J. Cryst. Growth. 197, 59(1999).
89. A. Gibaud, and S. Hazra, Current Sci. 78,1467(2000).
90. F. Family, and T. Vicsek, J. Phys. A 18,75(1985).
91. W. M. Tong, “Atomic force microscope study of growth kinetics: Scaling in the heteroepitaxy of CuCl on CaF2(111)” Phys. Rev. Lett. 72, 3374(1994).
92. A. L .Barabasi, and H. E. Stanely, “Fractal Concepts in Surface Growth” Chp2, 4 and 5. (Cambridge University Press, Cambridge, 1995).
93. J. Wook, S. J. Chung, W. J. Cho, T. S. Hahn, and S. S. Choi, “Thickness dependence of room temperature permittivity of polycrystalline BaTiO3 thin films by radio-frequency magnetron sputtering” J. Appl. Phys. 81, 6322 (1997).
94. N. Wang, H. B. Lu,W. Z. Chen, T. Zhao, F. Chen, H. Y. Peng, S. T. Lee, and G. Z. Yang, “Morphology and microstructure of BaTiO3/SrTiO3 superlattices grown on SrTiO3 by laser molecular-beam epitaxy” Appl. Phys. Lett. 75, 3464(1999).
95. T. Tasrumi, T. Suzuki, M. Yamane, and M. Daimon, “J Fabrication of Barium Titanate/Strontium Titanate Artificial Superlattice by Atomic Layer Epitaxy” Jpn. J. Appl. Phys. 33, 5192(1994).
96. Y. Yoneda, K. Sakaue, and H. Terauchi, “Dielectric Investigation of [(SrTiO3)6(BaTiO3)6]2 Multilayer Capacitor” Jpn. J. Appl. Phys. 40, 6888(2001).
97. K. Shimoyama, M. Kiyohara, K. Kubo, A. Uedono, and Y. Yamabe, “Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate” J. Appl. Phys. 92, 4625(2002).
98. T. Harigai, D. Tanaka, H. Kakemoto, S.Wada, and T. Tsurumi, “Dielectric properties of BaTiO3/SrTiO3 superlattices measured with interdigital electrodes and electromagnetic field analysis” J. Appl. Phys. 94, 7923(2003).
99. K. Iijima, T. Terashima, Y. Bando, K. Kamigaki, and H. Terauchi, “Atomic layer growth of oxide thin films with perovskite-type structure by reactive evaporation” J. Appl. Phys. 72, 2840(1992).
100. T. M. Shaw, A. Gupta, M. Y. Chen, P. E. Batson, R. B. Laibowitz, and B. A. Scott, “Atomic scale oxide superlattices grown by RHEED controlled pulsed laser deposition” J. Mater. Res. 9, 2566(1994).
101. A. van der Lee, “Gracing incident specular reflectivity: theory, experiment, and applications” Solid State Science 2, 257 (2000).
102. A. Takase, M. Kuribayashi, K. Ishida, K. Kimura, L. H. Kuo, T. Yakas, S. Miwa, T. Yao, H. Tomita, and S. Komiya, “Characterization of ZnSe/GaAs(001) Heteroepitaxial Interfaces by X-Ray Reflectivity Measurement” Jpn. J. Appl. Phys. 37, 3475(1998).
103. J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis and D. G. Schlom, “Abrupt PbTiO3/SrTiO3 superlattices grown by reactive molecular beam epitaxy”Appl. Phys. Lett.74, 2851(1999).
104. T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto and S. Wada, “Dielectric and optical properties of BaTiO3/SrTiO3 and BaTiO3/BaZrO3 superlattices” J. Appl. Phys. 91 ,4, 2284(2002).
105. H. Y. Lee, K. S. Liang, C. H. Lee and T. B. Wu, “Real-time x-ray scattering study of growth behavior of sputter deposited LaNiO3 thin films on Si sbstrates” J. Mater. Res. Vol. 15, 2606 (1997).
106. H. Y. Lee, W. D. Chang, C. H. Hsu, J. Y. Lee, J. Y. Juang, K. H. Wu, T. M. Uen and Y. S. Gou, “X-Ray scattering study of crystallization behavior in homoepitaxial growth of SrTiO3 films” Thin Solid Films 418, 163(2002).
107. H. Y. Lee and T. B. Wu, “Structural characterization of sputter-deposited LaNiO3 thin films on Si substrate by x-ray reflectivity and diffraction” J. Mater. Res. Vol. 12, 3165 (1997).
108. H. J. Shy and T. B. Wu, “Effects of Bottom Electrode on the Structural and Electrical Characteristics of Barium Titanate Thin Films” Jpn. J. Appl. Phys. 37 ,4049 (1998).
109. S. K. Sinha, E. B. Sirota, S. Garoff and H.B. Staniey, “X-ray and neutron scattering from rough surfaces” Phys. Rev. B 38, 2297 (1988).
110. S. K. Sinha, M. K. Sanyal, S. K. Satija, C. F. Majkrzak, D. A. Neumann, H. Homma, S. Szpala, A. Gibaud and H. Morkoc, “X-ray scattering studies of surface roughness of GaAs/A1As multilayers” Physica B 198, 72 (1994).
111. D. K. Bowen and B. K. Tanner, “Characterization of engineering surfaces by grazing incident x-ray reflectivity” Nanotechnology 4, 175 (1993).
112. A. van der Lee, “Gracing incident specular reflectivity: theory, experiment, and applications” Solid State Science, 2, 257 (2000).
113. C. A. Lucas, P. D.Hatton, S. Bates, T. W. Ryan, S. Miles and B. K. Tanner, “Characterization of nanometer-scale epitaxial structures by grazing-incidence x-ray diffraction and specular reflectivity” J. Appl. Phys. 63, 1936 (1988).
114. H. Chen and S. M. Heald, “Concentration profiling using x-ray reflectivity: Application to Cu-Al interfaces” J. Appl. Phys. 66, 1793 (1989).
115. M. Sugawara, M. Kondo, S. Yamazaki and K. Nakajima, “Exact determination of superlattice structures by small-angle x-ray diffraction method” Appl. Phys. Lett. 52, 742 (1988).
116. A. Visinoiu, M. Alexe, H. N. Lee, D. N. Zakharov, A. Pignolet, D. Hesse and U. Gosele., “Initial growth stages of epitaxial BaTiO3 films on vicinal SrTiO3 (001) substrate surfaces” J. Appl. Phys. 91, 10157(2002).
117. W. C. Goh, S. Y. Xu, S. J. Wang and C. K. Ong., “Microstructure and growth mode at early growth stage of laser-ablated epitaxial Pb(Zr0.52Ti0.48)O3 films on a SrTiO3 substrate” J. Appl. Phys. 89, 4497(2001).
118. N. Wakiya, K. Kuroyanagi, Y. Xuan, K. Shinozaki and N. Mizutani, “Nucleation and growth behavior of epitaxial Pb(Zr,Ti)O3/MgO(100) observed by atomic force microscopy” Thin Solid Films. 357, 166(1999).
119. S. K. Sinha, “Reflectivity using neutrons or X-rays? A critical comparison” Physica B 173, 25(1991).
120. J. Eymery, J. M. Hartmann and G. T. Baumbach, “Interface dilution and morphology of CdTe/MnTe superlattices studied by small angle X-ray scattering” J. Crystal Growth 184, 109 (1998).
121. L. He and D. Vanderbilt, “First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3” Phys. Rev. B 68, 134103 (2003).
122. K. Szot, W. Speier, R. Carius, U. Zastrow and W. Beyer, “Localized Metallic Conductivity and Self-Healing during Thermal Reduction of SrTiO3” Phys. Rev. Lett. 88, 075508 (2002).
123. D. O’Neill, R. M. Bowman and J. M. Gregg, “Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures” Appl. Phys Lett. 77, 1520 (2000).
124. P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov and A Loidl, “Origin of apparent colossal dielectric constants” Phys. Rev. B 66, 052105 (2002).
125. C. L. Canedy, H. Li, S. P. Alpay, L. S. Riba, A. L. Roytburd, and R. Ramesh, “Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects”Appl. Phys. Lett. 77, 1695 (2000).
126. W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchoefer, D. B. Chrisey, and J. S. Horwitz, “Microwave properties of tetragonally distorted (Ba0.5Sr0.5)TiO3 thin films” Appl. Phys. Lett. 76, 1185 (2000).
127. K. Ueda, H. Tabata, and T. Kawai, “Ferromagnetism in LaFeO3-LaCrO3 Superlattices” Science 280, 1064 (1998).
128. Z. Wang, T. Yasuda, S. Hatatani, and S. Oda, “Enhanced Dielectric Properties in SrTiO3/BaTiO3 Strained Superlattice Structures Prepared by Atomic-Layer Metalorganic Chemical Vapor Deposition” Jpn. J. Appl. Phys. 38, 6817 (1999).
129. H. J. Shy and T. B. Wu, “Effects of Bottom Electrode on the Structural and Electrical Characteristics of Barium Titanate Thin Films” Jpn. J. Appl. Phys. 37, 4049 (1998).
130. C. M. Wu and T. B. Wu, “Low temperature deposition of Ba0.4Sr0.6TiO3 thin films on LaNiO3-buffered electrode by rf magnetron sputtering” Mater. Lett. 33, 97 (1997).
131. O. I. Lebedev, J. F. Hamet, G. Van Tendeloo, V. Beaumont and B. Raveau, “Structure and properties of the YBa2Cu3O7–x/LaAlO3 superlattices” J. Appl. Phys. 90, 5261 (2001).
132. W. Matthews, and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations” J. Cryst. Growth, 27, 118 (1974).
133. C. R. Li, B. K. Tanner, D. E. Ashenford, J. H. C. Hogg, and B. Lunn, “High resolution x-ray diffraction and scattering measurement of the interfacial structure of ZnTe/GaSb epilayers” J. Appl. Phys. 82, 2281 (1997).
134. J. S. Speck, A. Seifert, W. Pompe, and R. Ramesh, “Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications” J. Appl. Phys. 76, 477 (1994).
135. J. S. Wu, C. L. Jia, K. Urban, J. H. Hao, and X. X. Xi, “Microstructure and misfit relaxation in SrTiO3/SrRuO3 bilayer films on LaAlO3(100) substrates” J. Mater. Res. 16, 3443 (2001).
136. P. R. Berger, K. Chang, P. Bhattacharya, and J. Singh, “Role of strain and growth conditions on the growth front profile of InxGa1–xAs on GaAs during the pseudomorphic growth regime” Appl. Phys. Lett. 53, 684 (1988).
137. D. Rose, U. Pietsch, A. Forster, and H.Metzger, “Depth resolved investigation of the relaxation behaviour in strained GaInAs/GaAs superlattices” Physica B, 198, 256 (1994).
138. H. H. Lee, M. S. Yi, H. W. Jang, Y.-T. Moon, S.-J. Park, O. Y. Noh, M. Tang, and K. S. Liang, “Determination of absolute indium content in InGaN/GaN multiple quantum wells using anomalous x-ray scattering” Appl. Phys. Lett. 81, 5120 (2002).
139. S. D. Wang, “Energy of an array of dislocations in a strained epitaxial layer deposited on a finite substrate” J. Appl. Phys. 88, 7089 (2000).
140. L. S.-J. Peng, X. X. Xi, B. H. Moeckly, and S. P. Alpay, “Strain relaxation during in situ growth of SrTiO3 thin films” Appl. Phys. Lett. 83, 4592 (2003).
141. Y. Yoneda, T. Okabe, K. K. Sakaue, H. Terauchi, and K. Deguchi, “Structural characterization of BaTiO3 thin films grown by molecular beam epitaxy” J. Appl. Phys. 83, 2458 (1998).
142. Y. Yano, K. Iijima, Y. Daitoh, Y. Bando, Y. Watanabe, H. Kasatani, and H. Tarauchi, “Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation” J. Appl. Phys. 76, 7833 (1994).
143. S. K. Streiffer, C.Basceri, C.B. Parker, S.E.Lash, and A.I. Kingon, “Ferroelectricity in thin films: The dielectric response of fiber-textured (BaxSr1–x)Ti1+yO3+z thin films grown by chemical vapor deposition” J. Appl. Phys. 86, 4565 (1999).
144. S. Hyun, and K. Char, “Effects of strain on the dielectric properties of tunable dielectric SrTiO3 thin films”Appl. Phys Lett. 79, 254 (2001).
145. A.R. James, and X. X. Xi, “Effects of buffer layer thickness and strain on the dielectric properties of epitaxial SrTiO3 thin films” J. Appl. Phys. 92, 6149 (2002).
146. G. Catalan, D. O’Neill, and J. M. Gregg, “Relaxor features in ferroelectric superlattices: A Maxwell–Wagner approach” Appl. Phys Lett. 77, 3078 (2000).
147. J.C. Shin, J. Park, C.S. Hwang, and H.J. Kim, “Dielectric and electrical properties of sputter grown (Ba,Sr)TiO3 thin films” J. Appl. Phys. 86, 506 (1999).
148. C. Basceri, S.K. Streiffer, A.I. Kingon and R. Waser, “The dielectric response as a function of temperature and film thickness of fiber-textured (Ba,Sr)TiO3 thin films grown by chemical vapor deposition” J. Appl. Phys. 82, 2497 (1997).
149. Y. C. Liang, T. B. Wu, H. Y. Lee, and Y. W. Hsieh, “Structural characteristics of epitaxial BaTiO3/LaNiO3 superlattice” J. Appl. Phys. 96, 584 (2004).
150. R. Grey, J. P. R. Dsvid, P. A. Claxton, F. Gonzalez Sanz, and J. Woodhead, “Relaxation of strain within multilayer InGaAs/GaAs pseudomorphic structures” J. Appl. Phys. 66, 975 (1989).
151. P. L. Gourley, I. J. Fritz, and L. R. Dawson, “Controversy of critical layer thickness for InGaAs/GaAs strained-layer epitaxy” Appl. Phys. Lett. 52, 377(1988).
152. M. Hovinen, A. Salokatve, and H. Asonen, “Properties of strained In0.2Ga0.8As/GaAs superlattices with various barrier thicknesses” J. Appl. Phys. 69, 3378(1991).
153. U. Pietsch, H. Metzger, S. Rugel, B. Jenichen, and I. K. Robinson, “Depth-resolved measurement of lattice relaxation in Ga1–xInxAs/GaAs strained layer superlattices by means of grazing-incidence x-ray diffraction” J. Appl. Phys. 74, 2381(1993).
154. G. L. Price, “Growth of highly strained InGaAs on GaAs” Appl. Phys. Lett. 53, 1288(1988).
155. I. J. Fritz, P. L. Gourley, and L. R. Dawson, “Critical layer thickness in In0.2Ga0.8As/GaAs single strained quantum well structures” Appl. Phys. Lett. 51, 1004(1987).
156. P. J. Orders, and B. Usher, “Determination of critical layer thickness in InxGa1–xAs/GaAs heterostructures by x-ray diffraction” Appl. Phys. Lett. 50, 980(1987).
157. U. Zimmermann, J.-P. Schlomka, M. Tolan, J. Stettner, W. Press, M. Hacke, and S. Mantl, “X-ray characterization of buried allotaxially grown CoSi2 layers in Si(100)” J. Appl. Phys. 83, 5823(1998).
158. T. S. Kang, and J. H. Je, “Real-time x-ray scattering study on the thermal evolution of interface roughness in CoSi2 formation” Appl. Phys. Lett. 80, 1361(2002).
159. J. H. Je, D.Y. Noh, H. K. Kim, and K. S. Liang, “Preferred orientation of TiN films studied by a real time synchrotron x-ray scattering” J. Appl. Phys. 81, 6126(1997).
160. G. B. Stephenson, J. A. Eastman, O. Auciello, A. Munkholm, C.Thompson, P. H. Fuoss, P. Fini, S. P. DenBaars, and J. S. Speck, MRS Bulletin, 24,21 (1999).
161. E. J. Tarsa, E. A. Hachfeld, F. T. Quinlan, J. S. Specka,and M. Eddy, “Raman spectroscopic study on the wirelike incorporation of Si dopant atoms on GaAs(001) vicinal surfaces” Appl. Phys. Lett. 64, 490 (1996).
162. H. Kano, K. Kagawa, A. Suzuki, A. Okabe, K. Hayashi, and K. Aso, “Substrate temperature effect on giant magnetoresistance of sputtered Co/Cu multilayers” Appl. Phys. Lett. 63, 2839 (1993).
163. N. K. Flevaris, D. Baral, J. E. Hilliard, and J. B. Ketterson, “A note on compositionally modulated Cu-Ni films with lattice-commensurate wavelengths” Appl. Phys. Lett. 38, 992(1981).
164. M. A. G. Halliwell, “X-ray diffraction solutions to heteroepitaxial growth problems” J. Cryst. Growth, 170, 47(1997).
165. D. Y. Noh, Y. Hwu, H. K. Kim, and M. Hong, “X-ray-scattering studies of the interfacial structure of Au/GaAs” Phys. Rev. B 51,4441(1995).
166. T. Terashima, Y. Bando, K. Ijima, K.Yamamoto, K. Hirata, K. Hayashi, K. Kamigaki, and H. Terauchi, “Reflection high-energy electron diffraction oscillations during epitaxial growth of high-temperature superconducting oxides” Phys. Rev. Lett. 65,2684(1990).
167. E. E. Fullerton, D. M. Kelly, J. Guimpel, and I. Schuller, “Roughness and giant magnetoresistance in Fe/Cr superlattices” Phys. Rev. Lett. 68, 859(1992).
168. E. E. Fullerton, J. Pearsion, C. H. Sowers, and S. D. Bader, “Interfacial roughness of sputtered multilayers: Nb/Si” Phys. Rev. B 48,17432(1993).
169. D. J. Eaglesham, and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100)” Phys. Rev. Lett. 64,1943(1990).
170. A. Sakai, and T. Tatsumi, “Defect-mediated island formation in Stranski-Krastanov growth of Ge on Si(001)” Phys. Rev. Lett. 71, 4007(1993).
171. Y. H. Xie, G. H. Gilmer, C. Roland, P. J. Silverman, S. K. Buratto, J. Y. Cheng, E. A. Fitzgerald, A. R. Kortan, S. Schuppler, M. A. Marcus, and P. H. Citrin, “Semiconductor Surface Roughness: Dependence on Sign and Magnitude of Bulk Strain” Phys. Rev. Lett. 73,3006(1994).
172. J. Y. Tsao, B. W. Dodson, S. T. Picraux, and D. M. Cornelison, “Critical Stresses for SixGe1-x Strained-Layer Plasticity” Phys. Rev. Lett. 59, 2455(1987).
173. B. W. Dodson, and J. Y. Tsao, “Relaxation of strained-layer semiconductor structures via plastic flow” Appl. Phys. Lett. 51, 1325(1987).
174. I. J. Fritz, “Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy” Appl. Phys. Lett. 51, 1080(1987).
175. G. H. Lee, B. C. Shin, and I. S. Kim, “Critical thickness of BaTiO3 film on SrTiO3 (001) evaluated by reflection high-energy electron diffraction” Mater. Lett. 50, 134(2001).
176. H. Yan, “Kinetic growth with surface diffusion: The scaling aspect” Phys. Rev. Lett. 68, 3048 (1992).
177. F. Family, “Dynamic scaling and phase transitions in interface growth” Physica A 168, 561 (1990).
178. Y. L. He, N. H. Yang, T. M. Lu, and G. C. Wang, “Measurements of dynamic scaling from epitaxial growth front: Fe film on Fe(001)” Phys. Rev. Lett. 69, 3770 (1992).
179. H. You, R. P. Chiarello, H. K. Kim, and K. G. Vandervoort, “X-ray reflectivity and scanning-tunneling-microscope study of kinetic roughening of sputter-deposited gold films during growth” Phys. Rev. Lett. 70, 2900 (1993).
180. E. J. Ernst, F. Fabre, R. Folkerts, and J. Lapujoulade, “Observation of a growth instability during low temperature molecular beam epitaxy” Phys. Rev. Lett. 72, 112 (1994).
181. J. Krug, M. Plischke, and M. Siegert, “Surface diffusion currents and the universality classes of growth” Phys. Rev. Lett. 70, 3271 (1993).
182. A. Paul, and G. S. Lodha, “Interface roughness correlation due to changing layer period in Pt/C multilayers” Phys. Rev. B 65, 245416 (2002).
183. D. Y. Noh, Y. Hwu, H. K. Kim, and M. Hong, “X-ray-scattering studies of the interfacial structure of Au/GaAs” Phys. Rev. B 51, 4441 (1995).
184. H. P. Sun, W. Tian, X. Q. Pan, J. H. Haeni, and D. G. Schlom, “Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3” Appl. Phys. Lett. 84, 3298(2004).
185. J. W. Matthews, “Defects associated with the accommodation of misfit between crystals” J. Vac. Sci.Technol. 12,126(1975).
186. B. P. Rodriguez, and J. M. Millunchick, “The role of morphology in the relaxation of strain in InGaAs/GaAs” J. Cryst. Growth, 264, 64(2004).
187. T. Hasegawa, M. Kohno, S. Hosaka, and S. Hosoki, “Dynamic observation of Si crystal growth on a Si(111)7 x 7 surface by high-temperature scanning tunneling microscopy” Phys. Rev. B 48, 1943 (1993).
188. I. J. Lee, J. W. Kim, T. B. Hur, Y. H. Hwang, and H. K. Kim, “Synchrotron x-ray scattering study on the evolution of surface morphology of the InN/Al2O3(0001) system” Appl. Phys. Lett. 81, 475(2002).
189. H. J. Kim, D. Y. Doh, J. H. Je, and Y. Hwu, “Evolution of surface morphology during Fe/Si(111) and Fe/Si(001) heteroepitaxy” Phys. Rev. B 59, 4650 (1999).
190. Z. J. Liu, Y. G. Shen, L. P. He, and T. Fu, “Surface evolution and dynamic scaling of sputter-deposited Al thin films on Ti(1 0 0) substrates” Appl. Surf. Sci. 226, 371(2004).
191. R. L. Schwoebel, “Step Motion on Crystal Surfaces. II” J. Appl. Phys. 40, 614 (1969).
192. M. Siegert, and M. Plischke, “Slope Selection and Coarsening in Molecular Beam Epitaxy” Phys. Rev. Lett. 73, 1517(1994).
193. I. K. Zuo, J. F. Wendelken, and J. Lapujoulade, “Evolution of Mound Morphology in Reversible Homoepitaxy on Cu(100)” Phys. Rev. Lett. 78, 2791(1997).
194. Z. H. Ming, S. Huang, Y. L.Soo, Y. H. Kao, T. Carns, and K. L.Wang, “Interfacial roughness scaling and strain in lattice mismatched Si0.4Ge0.6 thin films on Si” Appl. Phys. Lett. 67, 629(1995).
195. M. Kardar, G. Parisi, and Y. Zhang, “Dynamic Scaling of Growing Interfaces” Phys. Rev. Lett. 56, 889(1986).
196. J. Cherrier, V. L. Thanh, R. Buys, and J. Derrien, Europhys. Lett. 16, 737(1991).
197. S. D. Sarma, and P. Tamborenea, “A new universality class for kinetic growth: One-dimensional molecular-beam epitaxy” Phys. Rev. Lett. 66, 325(1991).
198. J. M. Freitag, and B. M. Clemens, “Nonspecular x-ray reflectivity study of roughness scaling in Si/Mo multilayers” J. Appl. Phys. 89, 1101 (2001).
199. D. E. Savage, N. Schimke, Y. H.Phang, and M. G.Lagally, “Interfacial roughness correlation in multilayer films: Influence of total film and individual layer thicknesses” J. Appl. Phys. 71, 3283 (1992).
200. P. Houdy, P. Boher, C. Schiller, P. Luzeau, R. Barchewitz, N. Alehyane, and M. Quahabi, Proc. SPIE 984, 95(1988).
201. A. Ballestad, B. J. Ruck, M. Admcyk, T. Pinnimgton, T. Tiejie, “Evidence from the Surface Morphology for Nonlinear Growth of Epitaxial GaAs Films” Phys. Rev. Lett. 86, 2377 (2001).
202. M. F. Gyure, J. J. Zinck, C. Ratsch, D. D. Vvedensky, “Unstable Growth on Rough Surfaces” Phys. Rev. Lett. 81, 4931 (1998).