研究生: |
余易弦 Yu, I-Hsien |
---|---|
論文名稱: |
利用Digital Etch改善準垂直型溝槽式閘極氮化鎵金氧半場效電晶體特性之研究 Investigation on Characteristics of Quasi-Vertical Trench Gate GaN MOSFET Treated with Digital Etch |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
龔正
Gong, Jeng 吳添立 Wu, Tian-Li |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 氮化鎵 、準垂直 、金氧半場效電晶體 |
外文關鍵詞: | GaN, Quasi-Vertical, MOSFET |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要在研製準垂直型溝槽式氮化鎵金氧半場效電晶體於藍寶石基板。藉由高解析度X光電子能譜分析,可以發現經由感應式耦合電漿蝕刻後會使得Ga 2p3/2元素訊號的峰值位移,指出其材料表面遭受破壞,為了解決表面破壞的情形,本論文採取Digital Etch(D.E)的蝕刻方式進行表面處理,且探討晶面及D.E表面處理對元件特性的影響。
本論文採用不同表面處理方式,分別為:(a)浸泡鹽酸、BOE與硫酸,(b)在200oC環境下進行10次的D.E,(c)在200oC環境下進行20次的D.E,(d)在200oC環境下進行20次的D.E搭配浸泡酸液,及(e)在450oC環境下進行20 次的D.E搭配浸泡酸液。
由量測結果得知,即使經過不同條件的表面處理,蝕刻過後的溝槽表面仍存在許多的陷阱,必須使用脈衝模式及搭配UV光照射的量測方式,才可以得到合理的輸出特性,整體而言,元件在200oC環境下進行20次的D.E表面處理過後可得到最佳的元件特性,該臨界電壓為5.5 V、最大汲極電流密度達0.83 A/mm2,經計算後的場效遷移率僅有4.8 (cm2/V-s)。
In this study, quasi-vertical trench gate of the gallium nitride (GaN) MOSFETs were fabricated on sapphire substrate. From high-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis, it was found that the Ga 2p3/2 peak was shifted by the etching of inductive coupling plasma, which indicates that the surface was damaged. In order to recover the surface properties, the treatment of digital etch (D.E) on the surface was carried out.
Five samples with quasi-vertical MOSFETs going through different surface treatments listed as the following were completed and compared: (a) soaking in hydrochloric acid, BOE and sulfuric acid. (b) 10 cycles of D.E at 200 °C (c) D.E for 20 cycles in a 200 °C environment. (d) 20 cycles of D.E at 200 °C with soaking in acids. (e) 20 cycles of D.E at 450 °C with soaking in acids.
From the measurements, it was discovered that even though the surface had been through different treatments, there might still exist a lot of traps on the etched trench surface. Pulse mode must be used in measurements together with UV light on in order to obtain reasonable output characteristics. Overall, the device treated with 20 cycles of digital etch at 200 ° C has the best device characteristics. With a threshold voltage (Vth) of 5.5 V and a maximum drain current density of 0.83 A/mm2, the calculated mobility is only 4.8 (cm2/V-s).
[1] N. Kaminski, “State of the art and the future of wide band-gap devices,” in Proc. IEEE Power Electron. Appl. pp. 1-9, 2009.
[2] M. N. Yoder, “Wide bandgap semiconductor materials and devices,” IEEE Trans. Electron Devices, vol. 43, pp. 1633-1636, 1996.
[3] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, “A review of GaN on SiC high electron-mobility power transistors and MMICs,” IEEE Trans. Microwave Theory and Techniques, vol. 60, no. 6, pp. 1764–1783, Jun. 2012.
[4] B. J. Baliga, “Advanced Power MOSFET Concepts,” Springer Verlag, 2010.
[5] S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, and Kevin J. Chen, “Al2O3/AlN/GaN MOS-channel-HEMTs with an AlN interfacial layer,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 723-725, Jul. 2014.
[6] C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett., vol. 94, no. 16, pp. 162101-1–162101-3, Apr. 2009.
[7] S. Ozaki, T. Ohki, M. Kanamura, T. Imada, N. Nakamura, N. Okamoto, T. Miyajima, and T. Kikkawa, “Effect of oxidant source on threshold voltage shift of AlGaN/GaN MIS-HEMTs using ALD-Al2O3 gate insulator films,” in Proc. CS MANTECH Conf., Apr. 2012, pp. 1–4.
[8] M. Kanechika, M. Sugimoto, N. Soejima, H. Ueda, O. Ishiguro, M. Kodama, E. Hayashi, K. Itoh, T. Uesugi, and T. Kachi, “A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor,” Jpn. J. Appl. Phys., vol. 46, pp. L503–505, 2007.
[9] H. Otake, S. Egami, H. Ohta, Y. Nanishi, and H. Takasu, “GaN-based trench gate metal oxide semiconductor field effect transistors with over 100 cm2/(V·s) channel mobility,” Jpn. J. Appl. Phys., vol. 46, pp. L599–L601, 2007.
[10] H. Otake, K. Chikamatsu, A. Yamaguchi, T. Fujishima, and H. Ohta, “Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates,” Appl. Phys. Exp., vol. 1, no. 1,art. no. 011105, pp. 1-3, 2008.
[11] C. H. Won, K. W. Kim, D. S. Kim, H. S. Kang, K. S. Im, Y. W. Jo, D. K. Kim, R. H. Kim, and J. H.Lee, “Normally-off vertical-type mesa-gate GaN MOSFET,” IET Electron. Lett., vol. 50, no. 23, pp. 1749-1751, 2014.
[12] H. Nie, Q. Diduck, B. Alvarez, A. P. Edwards, B. M. Kayes, M. Zhang, G. Ye, T. Prunty, D. Bour, and I. C. Kizilyalli, “1.5-kV and 2.2-mΩ-cm2 vertical GaN transistors on bulk-GaN substrates,” IEEE Electron Device Lett., vol. 35, no. 9, pp. 939-941, Sept. 2014.
[13] T. Oka, Y. Ueno, T. Ina, and K. Hasegawa, “Vertical GaN-based trench metal oxide semiconductor field–effect transistors on a freestanding GaN substrate with blocking voltage of 1.6 kV,” Appl. Phys. Exp., vol. 7, no. 2, art. no. 021002, pp. 1-3, 2014.
[14] R. Li, Y. Cao, M. Chen, R. Chu, “600 V/1.7 Normally-off GaN Vertical Trench Metal–Oxide–Semiconductor Field-Effect Transistor,” IEEE Electron Device Lett., vol. 37, no. 11, pp. 1466-1469, Nov. 2016.
[15] M. Kodama, M. Sugimoto, E. Hayashi, N. Soejima, O. Ishiguro, M. Kanechika, K. Itoh, H. Ueda, T. Uesugi, T. Kachi, “GaN-based trench gate metal oxide semiconductor field-effect transistor fabricated with novel wet etching,“ Appl. Phys. Exp., vol. 1, no. 2, pp. 021104, Feb. 2008.
[16] K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effect of TMAH treatment on device performance of normally off Al2O3/GaN MOSFET,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1376-1378, Oct. 2011.
[17] J. Lin, X. Zhao, D. A. Antoniadis, and J. A. del Alamo, “A novel digital etch technique for deeply scaled III–V MOSFETs,” IEEE Electron Device Lett., vol. 35, no. 4, pp. 440–442, Apr. 2014.
[18] A. Alian, C. Merckling, G. Brammertz, M. Meuris, M. Heyns, and K. D. Meyer, “InGaAs MOS transistors fabricated through a digital-etch gate-recess process and the influence of forming gas anneal on their electrical behavior,” ECS J. Solid State Sci. Tech nol., vol. 1, no. 6, pp. 310–314, 2012.
[19] X. Zhao and J. A. del Alamo, “Nanometer-scale vertical-sidewall reactive ion etching of InGaAs for 3-D III-V MOSFETs,” IEEE Electron Device Lett., vol. 35, no. 5, pp. 521–523, May 2014.
[20] D. Buttari, S. Heikman, S. Keller, and U. K. Mishra, “Digital etching for highly reproducible low damage gate recessing on AlGaN/GaN HEMTs,” in Proc. IEEE Lester Eastman Conf. High Perform. Devices, pp. 461–469, Aug. 2002
[21] S. D. Burnham, K. Boutros, P. Hashimoto, C. Butler, D. W. S. Wong, M. Hu, and M. Micovic, “Gate recessed normally off GaN on Si HEMT using a new O2BCl3 digital etching technique,” Phys. Stat. Sol. (C), vol. 7, no. 7/8, pp. 2010–2012, Jul. 2010.
[22] D. Keogh, P. Asbeck, T. Chung, R. D. Dupuis, and M. Feng, “Digital etching of III-N materials using a two-step Ar/KOH technique,” J. Electron. Mater., vol. 35, no. 4, pp. 771–776, Apr. 2005.
[23] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583–L585, 2001.
[24] N. Shiozaki, T. Sato, and T. Hashizume, “Formation of thin native oxide layer on n-GaN by electrochemical process in mixed solution with Glycol and Water,” Jpn. J. Appl. Phys., vol. 46, no. 4A, pp. 1471–1473, 2007.
[25] Y. J. Lin, Q. Ker, C. Y. Ho, H. C. Chang, and F. T. Chien, ”Nitrogen-vacancy-related defects and Fermi level pinning in n-GaN Schottky diodes,” J. Appl. Phys., vol. 94, pp. 1819, 2003.
[26] D. Selvanathan, F. M. Mohammed, J. O. Bae, I. Adesida, and Katherine H. A. Bogart, “Investigation of surface treatment sscheme on n-type GaN and Al0.20Ga0.80N,” J. Vac. Sci. Technol. B, vol. 23, pp. 2538, 2005.