簡易檢索 / 詳目顯示

研究生: 鄭怡欣
Cheng, Yi-Hsin
論文名稱: 陰極電沉積碘化鉛及其應用於鈣鈦礦太陽電池之研究
A Study on Cathodic Electrodeposition of Lead iodide and its Application in Perovskite Solar Cells
指導教授: 衛子健
Wei, Tzu-Chien
口試委員: 陳志銘
Chen, Chih-Ming
馮憲平
Feng, Shien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 92
中文關鍵詞: 鈣鈦礦太陽能電池電沉積碘化鉛
外文關鍵詞: Perovskite solar cells, Electrodeposition, Lead iodide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鹵化有機金屬鈣鈦礦在近年來因其傑出光電性質,應用在光伏電池中的光電轉換效率快速成長,高效率表現使得其實用性大增。然而在傳統鈣鈦礦太陽能電池製程中,鈣鈦礦層的製備大多採用旋轉塗佈製程,且大多使用有毒溶劑二甲基甲醯胺(DMF)。旋轉塗佈法以及DMF的使用不僅限制了鈣鈦礦太陽能電池的大面積化發展,也限制了其商業化的發展。
    本實驗室過去成功發展電沉積製備二氧化鈦(TiO2)緻密層之技術,引發本研究嘗試使用電沉積來製備碘化鉛(PbI2)薄膜之動機。希望能將兩研究結合應用,解決未來大面積生產時的塗佈均勻性,同時避免使用有毒溶劑DMF來製備PbI2。
    為了取代DMF溶劑,本研究選擇硝酸鉛、硝酸鈉以及碘溶於酒精水溶液中為電鍍液,並以已預先電沉積TiO2緻密層於表面之FTO導電玻璃作為工作電極。研究結果顯示電沉積PbI2之系統其在不同電位下,會有不同電化學反應發生,故電沉積PbI2需採用定電位方式製備。在該電位下碘發生還原反應轉變為碘離子,在與溶液中原有之鉛離子結合,形成PbI2並沉積於電極上。由於電沉積之PbI2晶體粒徑較大,嘗試透過優化電沉積溶液之濃度與添加添加劑的方式改善形貌。
    此外也將碘甲胺(Methyl ammonium iodide, MAI)浸泡法改成使用旋轉塗佈MAI的方式將PbI2轉換為鈣鈦礦MAPbI3,改善鈣鈦礦對底層TiO2覆蓋率不佳的問題,目前製備成鈣鈦礦太陽能電池的元件,最高元件效率為4.31%。


    Organic-inorganic hybrid lead halide perovskite has recently emerged as strong candidates to develop a low-cost and performance-competitive photovoltaic (PV) due to its excellent optoelectronic properties. However, most of the processing routes for perovskite devices are fabricated through spin-coating and used dimethylformamide (DMF) as a solvent which will inhibit the development of perovskite modules and the potential toward practical application.
    Previously, our group developed electrodeposition technique of more compact and thinner blocking TiO2 layer. In this research, electrodeposited TiO2 blocking layer (ED-BL) and lead iodide (PbI2) were used to substitute spin coating process and the use of the toxic solvent DMF.
    Herein, we introduced an electrochemical synthesis procedure to prepare PbI2 thin films on TiO2/FTO glass under an environmentally friendly protocol that is composed of lead nitrate and iodine in ethanol/water blend without using any hazardous solvent. By scrutinizing cyclic voltammetry in a three-electrode system, the reduction potential of iodine to iodide at -0.4 V was discovered. At the constant voltage, the increase in iodide population in the electrolyte is able to nudge the further reaction to form lead iodide in the Pb2+ rich surrounding. However, the resultant PbI2 grain size is too large to convert to perovskite. We optimized the concentration of the electrodeposition bath and tried to remedy the morphology flaws of PbI2 with additives.
    Besides, we replaced the MAI dipping method with spin coating process and improved the coverage of perovskite. After process optimization, we successfully fabricated perovskite solar cells based on electrodeposited PbI2 film which champion photovoltaic efficiency reached 4.31%.

    摘要 I 目錄 III 表目錄 VI 圖目錄 VII 第1章 緒論 1 1-1前言 1 1-2太陽能電池的光伏效應 2 1-3 太陽能電池的發展歷史 2 第2章 實驗原理與文獻回顧 5 2-1 鈣鈦礦太陽能電池簡介與發展 5 2-1-1 鈣鈦礦起源與材料介紹 5 2-1-2鈣鈦礦太陽能電池發展簡介 6 2-2 鈣鈦礦太陽能電池結構與工作原理 6 2-2-1鈣鈦礦太陽能電池工作原理 7 2-2-2 多孔性鈣鈦礦太陽能電池介紹 9 2-2-3 平面鈣鈦礦太陽能電池介紹 10 2-3 鈣鈦礦吸收層製備方式 10 2-3-1 一步法溶液製程 11 2-3-2 兩步法溶液製程 11 2-4 常見鈣鈦礦形貌修飾方式介紹 15 2-4-1 溫度熱退火形貌影響 15 2-4-2 溶劑退火形貌影響 16 2-5 鈣鈦礦太陽能電池面臨之挑戰 19 2-6 研究目的與動機 20 2-7 電沉積碘化鉛文獻回顧 20 2-7-1 溫度控制 24 2-7-2 濃度控制 26 2-7-3 工作電極透過矽烷化合物表面改質 28 2-7-4 添加劑控制 29 第3章 實驗部分 32 3-1 實驗藥品與材料 32 3-2 實驗儀器與分析原理 33 3-2-1 紫外光臭氧處理 34 3-2-2 低/可變真空掃描式電子顯微鏡 34 3-2-3高溫爐 35 3-2-4 X光繞射儀(X-ray diffraction,XRD)[84] 36 3-2-5 太陽光模擬器量測系統(Solar simulator)與IV曲線量測系統 37 3-3 實驗流程 41 3-3-1清洗透明導電玻璃(FTO) 41 3-3-2電沉積二氧化鈦緻密層 42 3-3-3電沉積碘化鉛 43 3-3-4將碘化鉛轉換為鈣鈦礦 44 3-3-5製備HTM層及金電極 45 第4章 實驗結果與討論 46 4-1 電沉積碘化鉛系統建立 46 4-1-1 循環伏安法之電位分析與電沉積反應機制 47 4-1-2 電沉積碘化鉛與旋轉塗佈碘化鉛之比較 49 4-2 電沉積碘化鉛形貌控制 51 4-2-1 溫度控制 51 4-2-2 溶劑退火 52 4-2-3 濃度調控 53 4-2-4 ETAS工作電極表面改質 64 4-2-5 添加劑 67 4-3 電沉積碘化鉛應用於鈣鈦礦太陽能電池 80 4-3-1 浸泡與旋塗MAI差異性 80 4-3-2 不同MAI濃度對元件影響及表現 82 4-3-3 不同電沉積碘化鉛時間對元件影響及表現 83 4-3-4 溶劑退火碘化鉛製備元件之影響及表現 85 第5章 結論 87 參考文獻 88

    [1] B. O'regan, M. Grätzel, nature 1991, 353, 737.
    [2] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Journal of the American Chemical Society 2009, 131, 6050.
    [3] D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. F. Liu, Nature communications 2018, 9, 3239.
    [4] K. T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee, M. K. Nazeeruddin, Energy & Environmental Science 2017, 10, 621.
    [5] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, Science 2017, 356, 1376.
    [6] NREL. Research Cell Efficiency Records,2019
    [7] Y. Chen, L. Zhang, Y. Zhang, H. Gao, H. Yan, RSC Advances 2018, 8, 10489.
    [8] K. Chondroudis, D. B. Mitzi, Chemistry of materials 1999, 11, 3028.
    [9] D. B. Mitzi, K. Chondroudis, C. R. Kagan, IBM journal of research and development 2001, 45, 29.
    [10] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam, Energy & Environmental Science 2014, 7, 399.
    [11] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, T. J. White, Journal of Materials Chemistry A 2013, 1, 5628.
    [12] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nature Photonics 2014, 8, nphoton. 2014.134.
    [13] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, Scientific reports 2012, 2, 591.
    [14] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 1228604.
    [15] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
    [16] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
    [17] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Journal of the American Chemical Society 2013, 136, 622.
    [18] C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, H. W. Lin, Advanced Materials 2014, 26, 6647.
    [19] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 2011, 3, 4088.
    [20] W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.-B. Cheng, L. Han, Energy & Environmental Science 2015, 8, 629.
    [21] K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, Scientific reports 2014, 4, 4756.
    [22] Z. Song, S. C. Watthage, A. B. Phillips, M. J. Heben, Journal of Photonics for Energy 2016, 6, 022001.
    [23] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, Nature photonics 2013, 7, 486.
    [24] T. Leijtens, B. Lauber, G. E. Eperon, S. D. Stranks, H. J. Snaith, The journal of physical chemistry letters 2014, 5, 1096.
    [25] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, Advanced Functional Materials 2014, 24, 151.
    [26] J. J. Choi, X. Yang, Z. M. Norman, S. J. Billinge, J. S. Owen, Nano letters 2013, 14, 127.
    [27] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith, Nature communications 2013, 4, 2885.
    [28] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, D. Cahen, Nano letters 2014, 14, 1000.
    [29] J. Zhang, Q. Sun, Q. Chen, Y. Wang, Y. Zhou, B. Song, N. Yuan, J. Ding, Y. Li, Advanced Functional Materials 2019, 1900484.
    [30] X. Liu, Y. Cheng, C. Liu, T. Zhang, N. Zhang, S. Zhang, J. Chen, Q. Xu, J. Ouyang, H. Gong, Energy & Environmental Science 2019, 12, 1622.
    [31] C. Chen, Y. Jiang, J. Guo, X. Wu, W. Zhang, S. Wu, X. Gao, X. Hu, Q. Wang, G. Zhou, Advanced Functional Materials 2019, 1900557.
    [32] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
    [33] C. Roldan-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, M. K. Nazeeruddin, Energy & Environmental Science 2015, 8, 3550.
    [34] Z. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, M. J. Heben, Chemistry of Materials 2015, 27, 4612.
    [35] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, Energy & Environmental Science 2014, 7, 2359.
    [36] K. Liang, D. B. Mitzi, M. T. Prikas, Chemistry of materials 1998, 10, 403.
    [37] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nature nanotechnology 2014, 9, 927.
    [38] Z. Song, S. C. Watthage, B. L. Tompkins, G. K. Liyanage, A. B. Phillips, R. J. Ellingson, M. J. Heben, "Spatially resolved characterization of solution processed perovskite solar cells using the lbic technique", presented at IEEE 42nd Photovoltaic Specialist Conf., 2015.
    [39] L. Huang, Z. Hu, G. Yue, J. Liu, X. Cui, J. Zhang, Y. Zhu, Physical Chemistry Chemical Physics 2015, 17, 22015.
    [40] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, M. Grätzel, Advanced Functional Materials 2014, 24, 3250.
    [41] B.-E. Cohen, S. Gamliel, L. Etgar, APL materials 2014, 2, 081502.
    [42] S. Aharon, A. Dymshits, A. Rotem, L. Etgar, Journal of Materials Chemistry A 2015, 3, 9171.
    [43] L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang, Y. Zhu, Solar Energy Materials and Solar Cells 2015, 141, 377.
    [44] H. Yu, X. Liu, Y. Xia, Q. Dong, K. Zhang, Z. Wang, Y. Zhou, B. Song, Y. Li, Journal of Materials Chemistry A 2016, 4, 321.
    [45] C. Liu, K. Wang, C. Yi, X. Shi, A. W. Smith, X. Gong, A. J. Heeger, Advanced Functional Materials 2016, 26, 101.
    [46] N. Cheng, P. Liu, S. Bai, Z. Yu, W. Liu, S.-S. Guo, X.-Z. Zhao, Journal of Power Sources 2016, 319, 111.
    [47] J.-H. Im, J. Luo, M. Franckevičius, N. Pellet, P. Gao, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, N.-G. Park, Nano letters 2015, 15, 2120.
    [48] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
    [49] D. Bi, B. Xu, P. Gao, L. Sun, M. Graetzel, A. Hagfeldt, Nano Energy 2016, 23, 138.
    [50] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Energy & environmental science 2016, 9, 1989.
    [51] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. Chang, M. G. Kanatzidis, Nature Photonics 2014, 8, 489.
    [52] T. C. Jellicoe, J. M. Richter, H. F. Glass, M. Tabachnyk, R. Brady, S. n. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, Journal of the American Chemical Society 2016, 138, 2941.
    [53] M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, Advanced Materials 2014, 26, 7122.
    [54] K. P. Marshall, R. I. Walton, R. A. Hatton, Journal of Materials Chemistry A 2015, 3, 11631.
    [55] S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, S. I. Seok, Journal of the American Chemical Society 2016, 138, 3974.
    [56] C. A. Redlich, W. S. Beckett, J. Sparer, K. W. Barwick, C. A. Riely, H. Miller, S. L. Sigal, S. L. Shalat, M. R. Cullen, Annals of internal medicine 1988, 108, 680.
    [57] X.-P. Cui, K.-J. Jiang, J.-H. Huang, X.-Q. Zhou, M.-J. Su, S.-G. Li, Q.-Q. Zhang, L.-M. Yang, Y.-L. Song, Chemical Communications 2015, 51, 1457.
    [58] J.-h. Huang, K.-j. Jiang, X.-p. Cui, Q.-q. Zhang, M. Gao, M.-j. Su, L.-m. Yang, Y. Song, Scientific reports 2015, 5, 15889.
    [59] H. Chen, Z. Wei, X. Zheng, S. Yang, Nano Energy 2015, 15, 216.
    [60] G. Popov, M. Mattinen, M. L. Kemell, M. Ritala, M. Leskelä, ACS Omega 2016, 1, 1296.
    [61] Z. Zhang, M. Li, W. Liu, X. Yue, P. Cui, D. Wei, Solar Energy Materials and Solar Cells 2017, 163, 250.
    [62] U. Charles, M. Ibrahim, M. Teridi, Journal of Power Sources 2018, 378, 717.
    [63] J. C. Hill, J. A. Koza, J. A. Switzer, ACS applied materials & interfaces 2015, 7, 26012.
    [64] I. Kosta, H. Grande, R. Tena-Zaera, Electrochimica Acta 2017, 246, 1193.
    [65] E. Pérez-Gutiérrez, M. J. Percino, D. M. Montoya, D. Solis-Ibarra, M. Cerón, O. Barbosa-García, ACS Applied Energy Materials 2018, 1, 3843.
    [66] B. P. Darko Grujicic, Electrochimica Acta 2002, 47, 2901.
    [67] L. Xu, Y. Guo, Q. Liao, J. Zhang, D. Xu, The Journal of Physical Chemistry B 2005, 109, 13519.
    [68] L. F. Da Silva, A. Öchsner, R. D. Adams, Handbook of adhesion technology, Springer Science & Business Media, 2011.
    [69] B. Arkles, Gelest Inc., Morrisville, PA 2006.
    [70] B. Arkles, Chemtech 1977, 7, 766.
    [71] K.-i. Iimura, Y. Nakajima, T. Kato, Thin Solid Films 2000, 379, 230.
    [72] M. Zhu, M. Z. Lerum, W. Chen, Langmuir 2011, 28, 416.
    [73] G. L. Witucki, Journal of coatings technology 1993, 65, 57.
    [74] E. Asenath Smith, W. Chen, Langmuir 2008, 24, 12405.
    [75] C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, S. Gwo, Journal of the American Chemical Society 2008, 130, 824.
    [76] C.-W. Hsu, W.-Y. Wang, S.-H. Wang, Y.-H. Kao, T.-C. Wei, 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT),IEEE Xplore 2015,245-249.
    [77] A. Francis, C. Dodge, J. Gillow, Nature 1992, 356, 140.
    [78] S. P. Garcia, S. Semancik, Chemistry of materials 2007, 19, 4016.
    [79] J. R. Brownson, C. Georges, C. Lévy-Clément, Chemistry of materials 2006, 18, 6397.
    [80] G.-R. Li, C.-R. Dawa, Q. Bu, F.-l. Zhen, X.-H. Lu, Z.-H. Ke, H.-E. Hong, C.-Z. Yao, P. Liu, Y.-X. Tong, Electrochemistry communications 2007, 9, 863.
    [81] J. P. Healy, D. Pletcher, M. Goodenough, Journal of electroanalytical chemistry 1992, 338, 155.
    [82] W.-P. Dow, M.-Y. Yen, W.-B. Lin, S.-W. Ho, Journal of The Electrochemical Society 2005, 152, C769.
    [83] K. Tan, M.-B. Tian, Q. Cai, Thin Solid Films 2010, 518, 5159.
    [84] 林麗娟, 工業材料雜誌 1994, 86, 100.

    QR CODE