簡易檢索 / 詳目顯示

研究生: 李明翰
Ming-Han Lee
論文名稱: 飛秒光頻梳的改進
The improvement of femtosecond optical frequency comb
指導教授: 施宙聰
Jow-Tsong Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 61
中文關鍵詞: 光頻梳飛秒雷射
外文關鍵詞: optical frequency comb, femtosecond laser
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在精密量測與現代科技應用中,例如物理常數的定義、基本物理定律的檢測、原子與分子結構上的研究、光通訊系統等等。光頻標準的建立及絕對光頻的量測是非常重要的。過去,光頻標準是建立在少數的原子分子的躍遷頻率上,再藉由非常複雜的頻率鏈﹝frequency chain﹞擴張其涵蓋範圍。然而,隨著飛秒光頻梳的發展,提供了一個非常簡易可靠的方法,頻率涵蓋範圍從可見光延伸到近紅外光,甚至還可藉由一些非線性的光學方法,將頻率範圍延伸到深紫外其中紅外的頻段。
    本論文是以實驗室原有的光頻梳﹝optical frequency comb﹞為基礎,而加以改進使其更加穩定。我們先利用鎖模雷射﹝mode-locked﹞產生約 44 飛秒的脈衝,再利用長約 15 公分的光子晶體光纖﹝photonic crystal fiber﹞,將頻譜拉寬超過一個八度音﹝octave﹞,波長範圍從 500 nm 到 1550 nm。最後測頻的部分我們使用光柵取代原本的濾波片,藉由光柵的繞射效應把待測光取出並量測。我們利用光頻梳量測碘分子在 R(56) 32-0 的譜線超精細躍遷 a10 頻率。目前我們系統的最後結果其量測頻率的精準度約為 2.3 x 10-12 @ 1 s。


    Absolute frequency measurement is of great interest not only for metrology applications but also for high-resolution spectroscopy, optical communications, and physical constant definitions. Frequency standards at optical region based on atomic or molecular absorptions provide high accuracy, but it can’t cover all optical spectrum are limited to some special frequencies. With the progresses of the femtosecond lasers and photonic crystal fibers, the frequency comb from visible to near infrared region is well established. It can accurately measure the absolute frequency of stabilized laser.
    Mode-locked lasers generate ultrashort optical pulses by establishing a fixed relationship across a broad spectrum of frequency. The pulse duration is about 44 fs at time domain. The pulses train generated by a mode-locked laser has a frequency spectrum that consists of a discrete, regular spaced series of sharps lines, known as a frequency comb at frequency domain. The frequency of the nth comb line is n×frep+δ. Establishing an optical frequency comb by simultaneously stabilizes the repetition rate and offset frequency. We used the 15-cm-long photonic crystal fiber to generate a spectrum that spans from 500 nm to 1550 nm. And obtain the offset frequency by self-reference interferometer. We stabilized the repetition rate and offset frequency by controlling the cavity length and the pump power. We used the optical frequency comb to measure of a10 component of Iodine R(56) 32-0. The accuracy of our femtosecond comb system is 2.3 x 10-12 @ 1 s.

    第1章 導論 9 1.1 動機 9 1.2 光頻計量回顧 9 1.3 論文簡介 11 第2章 實驗原理 12 2.1 光頻梳的重複率 frep﹝repetition rate﹞和頻差 δ ﹝offset frequency﹞ 12 2.1.1 Self - Reference 14 2.1.2 超連續光譜纡﹝supercontinuum﹞ 15 2.2 鎖模雷射 17 2.2.1 Self Starting of Kerr-Lens 18 2.2.2 飛秒雷射 19 2.2.3 非線性光學效應 20 2.3 Intensity Autocorrelation ﹝IA﹞ Measurement 22 2.4 頻率標準 25 第3章 實驗設計與結果 27 3.1 脈衝寬度量測 27 3.2 雷射架構 28 3.2.1 雷射系統 28 3.2.2 脈衝的重複率 frep﹝repetition rate﹞ 29 3.2.3 壓電材料﹝PZT﹞特性測量 32 3.3 偏差頻率﹝offset frequency﹞ 36 3.3.1 超連續光譜﹝纡supercontinuum胝﹞ 36 3.3.2 Self - Reference 38 3.3.3 鎖相迴路﹝phase-locked loop﹞ 43 3.3.4 相位雜訊﹝phase noise﹞ 44 3.4 碘分子在 532 nm 吸收的絕對頻率量測 49 第4章 總結 58 第5章 參考文獻 60

    [1] Schnatz,H.,et al., Phys. Rev. Lett., vol. 76,18,1996.
    [2] H. R. Telle, D. Meschede and T. W. Hänsch, Opt. Lett., 15, 532, 1990.
    [3] J. N. Eckstein, A. I. Ferguson and T. W. Hänsch, Phys. Rev. Lett. 40, 847, 1978.
    [4] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science vol. 288, 635, 2000.
    [5] S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. Vol.72, No.10, 2001.
    [6] G. P. Agrawal, “Nonlinear fiber optics” third edition, Govind P. 2001.
    [7] J. K. Ranka, Opt. Lett. Vol.25, No.1, 2000
    [8] Rulliere, Claude,”Femtosecond laser pulses” Springer, 1998.
    [9] U. Keller, W.H Knose, G.W. Hooft, H. Roskos, T.R. Woodward, J.E. Cunningham, D.L. Sivco, and A.Y. Cho: Adv. Sol. State Lasers 10, 115, 1991.
    [10] J. N. Eckstein, A.I. Ferguson. and T. W. Hansch, Phys. Rev. Lett. 40,847
    [11] J-C Diels and W. Rudolph “Ultrashort laser pulse phenomena “San Diego Academic Press, 1996.
    [12] R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, Opt. Lett. 19, 201, 1994.
    [13] B.E.A. Saleh and M.C. Teich, ”Fundamental of Photonics” John Wiley & Sons
    [14] 楊尚達“超光光學講義”
    [15] M.Desaintfuscien, “Data Processing in Precise Time and Frequency Applications”
    [16] 丁勝懋“雷射工程導論”第四版
    [17] W.K. Lee, D.S. Yee, and H.S. Suh, Apl. Opt. 46, 20, 2007
    [18] A. Arie, and R. L. Byer, J. Opt. soc. Am. B 10, 1990, 1993.
    [19] T. J. Quinn, ‘‘Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards ﹝2001﹞,’’ Metrologia 40, 103, ﹝2003﹞
    [20] Th.Udem et al., Phys. Rev. Lett. 86, 4996, 2001
    [21] J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. R. Telle, Opt. Lett. 26, 1589, 2001.
    [22] J. von Zanthier et al., Opt. Lett.. 25, 1729, 2000
    [23] K. R. Vogel et al., Opt. Lett. 26, 102, 2001
    [24] J. Stenger, T. Binnewies, G. Wilpers, F. Riehle, H. R. Telle, J. K. Ranka, R. S. Windeler, and A. J. Stentz, Phys. Rev. A 63, 021802, 2001

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE