簡易檢索 / 詳目顯示

研究生: 莊淵智
Yuan-Chih Chuang
論文名稱: 紋理特徵應用於影像分類
Texture features for image classification
指導教授: 陳朝欽
Chaur-Chin Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 34
中文關鍵詞: 紋理分析
外文關鍵詞: Texture analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 比較於小波轉換在壓縮上的應用,這篇論文將小波轉換的研究重點,放置於紋理影像的辨識。採用的小波轉換基底有四個Haar、Daubechies’ four、5/3以及9//7小波轉換。Haar小波轉換,只取兩個運算元作為輸入,在概念上,是小波轉換中最易於瞭解的基底。而Daubechies’ four小波轉換,在小波轉換一開始廣為使用的基底。5/3、9/7小波轉換則是JPEG2000依據圖片壓縮率的需求而制訂的。 因此在眾多的小波基底中,我們採用這四個小波基底。一張影像以四個小波基底計算得到的特徵,利用圖訊識別的1-nn分類法,以及五種相似度量測方法,計算各個特徵之間的差異性,最後對這四個小波基底在分類上做效能評估。除了小波轉換,碎形維度也涵蓋在這篇論文中。經由碎形的概念,將一張平面影像視為2D到3D的物體,並計算維度,最後以圖訊識別量測碎形特徵的效能。


    Many proficient techniques classify texture images with high performance. However, under the unknown result, we attempt to apply a new method, wavelets, adopted by JPEG2000 and MPGE4 to classify texture images in the thesis. Fractal dimensions describe texture images by a floating point between 2 and 3. The Fourier power spectrum and the box counting method are adopted to compute two fractal dimensions. Experiments will not only include wavelets, but measure the fractal dimensions of Brodatz database.

    Chapter 1 ....................................1 Chapter 2....................................3 2.1 Introduction ...........................3 2.2 Lifting Scheme ...........................4 2.3 Haar Wavelet Transform ..................5 2.4 Daubechies’ Four Wavelet Transform.......6 2.5 Reversible 5/3 Wavelet Transform .........8 2.6 Irreversible 9/7 Wavelet Transform.......11 Chapter 3 ....................................15 3.1 Introduction ...........................15 3.2 Box-counting Method ..................16 3.3 Fourier Power Spectrum Method .........19 Chapter 4 .....................................20 4.1 Introduction ............................20 4.2 Similarity Indices ...................21 4.2.1 Euclidean Distance: ...................21 4.2.2 Cityblock Distance: ...................22 4.2.3 Chebyshev Distance: ...................22 4.2.4 Mahalanobis Distance: ...................22 4.2.5 Chord Distance: ...................23 4.3 Experiments .............................23 4.4 Summery and Discussion ...................29 Chapter 5 .....................................31 References ............................32

    [1] K. Andra, C. Chakrabarti, “A VLSI Architecture for Lifting-Based Forward and Inverse Wavelet Transform,” IEEE Trans. on Signal Processing, Vol. 50, No. 4, 966-977, 2002.
    [2] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image Coding Using Wavelet Transforms,” IEEE Trans. on Image Processing, Vol. 1, 205-220, 1992.
    [3] M.F. Barnsley, Fractal Everywhere, Academic Press, New York, 1988.
    [4] C.C. Chen, C.L. Huang, “Markov Random Fields for Texuture Classification,” Pattern Recognition Letter, Vol. 14, 907-914, 1993.
    [5] Y.H. Chou, “A Study on Watermarking Experiments by Wavelet Transformation,” M.S., Department of Computer Science, National Tsing Hua University, 2003.
    [6] R. Claypoole, G. M. Davis, W. Sweldens, R. Baraniuk , “Nonlinear Wavelet Transforms for Image Coding via Lifting,” IEEE Trans. on Image Processing, Vol. 12, 1449-1459, 1988.
    [7] I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,” Communications on Pure and Applied Mathematics, Vol. 41, 909-996, 1988.
    [8] R. Dubes, A. Jain, ”Random Field Models in Image Analysis”, J. Appl. Statist, Vol. 16, No. 2, 131-164, 1989.
    [9] K. Falconer, Fractal Geometry, Wiley, New York, 1990.
    [10]A. K. Jain, F. Farrokinia, “Unsupervised Texture Segmentation Using Gabor Filters,” Pattern Recognition, Vol. 24, No. 12, 1167-1186, 1991.
    [11] J. Feder, Fractal, Plenum Press, New York, 1988.
    [12] P. Goupillaud, A. Grossmann, J. Morlet, “Cycle-octave and Related Transforms in Seismic Signal Analysis,” Geoexploration, Vol. 23, 85-102, 1984-1985.
    [13] J.M. Keller, S. Chen, ”Texture Description and Segmentation through Fractal Geometry”, Computer Vision, Graphics and Image Processing, Vol. 45, No. 1, 150-166, 1989.
    [14] X. Lan, N. Zheng, Y. Wu, Y. Liu, Z. Liu, K. Mei, “Highly Efficient and Parallel VLSI Architecture Design for JPEG2000 of 2D Discrete Wavelet Transform,” Journal of Xian Jiaotong University, Vol. 38, 149-153, 2004
    [15] B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.
    [16] P.P. Ohanian, R.C. Dubes, “Performance Evaluation for Four Classes of Textural Features,” Pattern Recognition, Vol. 25, No. 8, 829-833, 1992.
    [17] H.O. Peitgen, H. J¨urgens, D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer-Verlag, New York, 1992.
    [18] R.M. Rao and A.S. Bopardiskar, “Wavelet Transforms: Introduction to Theory and Applications,” July 1998
    [19] N. Sarkar, B.B. Chaudhuri, ”An Efficient Approach to Estimate Fractal Dimension of Textural Images”, Pattern Recognition, Vol. 25, No. 9, 1035-1041, 1992.
    [20] W. Sweldens, ”The lifting scheme: A Construction of Second Generation Wavelets, ” SIAM J. Math. Anal, Vol. 29, 511-546, 1997.
    [21] H. Takayasu, Fractal in the Physical Sciences, Manchester University Press, U.K., 1990.
    [22] D.S. Taubman, M.W. Marcellin, JPEG2000: Image Compression Fundamentals, Standards and Practice, Kluwer Academic Publishers, Boston, 2002.
    [23] R. Voss, “Random Fractals: Characterization and Measurement”, Scaling Phenomena in Disordered Systems, Plenum, New York, 1986.
    [24] J. Zhang, T. Tan, “Brief Review of Invariant Texture Analysis Methods,” Pattern Recognition, Vol. 35, 735-747, 2002.
    [25] ISO/IEC 15444-1, Information Technology JPEG2000 image coding system, 2000
    [26] http://www.jpeg.org/jpeg2000
    [27] http://www.ux.his.no/ tranden/brodatz.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE