簡易檢索 / 詳目顯示

研究生: 練孟婷
Lien, Mong-Ting
論文名稱: Echinoid與Friend of echinoid蛋白分子於調控細胞黏著上所扮演之角色研究
The Role of Echinoid and Friend of echinoid In Mediating Cell Adhesion
指導教授: 徐瑞洲
Hsu Jui-Chou
口試委員: 桑自剛
白麗美
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 55
中文關鍵詞: EchinoidFriend of echinoidcell adhesion
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於動物體發育的過程中,細胞間的黏著在組織修補、組織再生及細胞型態發生(morphogenesis)上扮演決定性的角色。細胞間不同的黏著作用可以促進相同細胞群體間的辨識與聚合,甚至促使不同細胞群體分離且形成明顯相隔的聚落。在果蠅的wing imaginal discs上,數種不同的分子可共同調控在adherens junctions (AJs) 中的細胞黏著作用。Echinoid (Ed) 是一個具有免疫球蛋白區域 (immunoglobulin domain)的細胞黏著分子,一般存在於AJs上。Drosophlia E-cadherin (DE-cad) 則是在AJs裡最主要的細胞黏著分子,DE-cad可與Ed共同合作以調控細胞間的黏著。而身為Ed的paralogue,另一個分子Friend of echinoid (Fred) 也被預期可以調控細胞之間的黏著。於本研究中,我們結合了數種RNAi及異位表現 (ectopic expression) 技術以幫助我們理解Ed、Fred及DE-cad之間的關係。當我們在ed-RNAi clone裡大量表現Fred蛋白,不僅細胞群體的同性相聚作用 (cell sorting) 會被破壞,細胞甚至表現出分散 (scattering) 的新性狀。clone細胞中的DE-cad被動地減少,而Ed、Fred及DE-cad的分佈差異最後促使細胞彼此分離。經由本研究推論即使Fred蛋白與Ed蛋白結構十分相似,Fred蛋白卻提供了與Ed不相同的黏著功能。


    During animal development, cell adhesion plays a critical role in tissue repair, regeneration and morphogenesis. Different adhesive interactions between cells promote the recognition and assembly of cells with similar properties and also lead them to segregate into distinct cell populations. In Drosophila wing imaginal discs, several components involve in the regulation of cell adhesion at adherens junctions (AJs). Echinoid (Ed) is an immunoglobulin domain-containing cell adhesion molecule (CAM) that localizes to AJs. Drosophila E-Cadherin (DE-cad), the major CAM of AJs, cooperates with Ed to mediate adhesion in wing discs. And another CAM called Friend of echinoid (Fred), which is a paralogue of Ed, is also predicted to provide some efforts in regulating adhesion in AJs. In this study, we combine several RNAi and overexpression experiments to comprehend the relations between Ed, Fred and DE-cad. Overexpression of Fred in ed RNAi clones can not only rescue the sorting phenotype but further trigger the clone cells to scatter. During this process, DE-cad decreases passively at the contact sites, and the differential distributions of Ed, Fred and DE-cad between clone and wild-type cells finally induce the scattering phenotype. Our study reveals that, although sharing high similarity with Ed, the adhesive function of Fred is different from Ed.

    Chapters 1. Introduction……………….……………………………………………………… 1 2. Materials and Methods 2.1 Drosophila Stocks……………….…………………………………………... 4 2.2 Live imaging of pupal histoblast……………………………..……………… 5 2.3 Culture and transfection of Drosophila S2 cells…………….……….….…... 5 2.3 Immunohistochemistry…………….………………………………….….….. 6 3. Results 3.1 Differences between ed-RNAi, Ed and Fred ectopic clones………...……..... 8 3.2 Overexpression of Fred in ed-RNAi clones rescues sorting and further causes scattering……………………........................................................… 10 3.3 The extracellular domain of Fred is sufficient to trigger scattering…...…… 11 3.4 Cell prefers to disperse in ed-RNAi+Fred clones…………………...…...… 12 3.5 The apical surfaces of cells in ed-RNAi+Fred clones enlarge dramatically................................................................................................... 13 3.6 Ectopic expression of ed-RNAi and Fred at A/P boundary of wing disc.…. 14 3.7 Separating hypothesis of ed-RNAi+Fred clones……………………..…….. 15 3.7.1 Overexpressing DE-cad in ed-RNAi+Fred clones cannot rescue the scattering phenotype………………….....…………………….......… 17 3.7.2 Relations between DE-cad downregulation and scattering phenotype of ed-RNAi+Fred clones……………………….…..……………….. 17 3.8 Ectopic expression of Fred in cad-RNAi clones also rescue sorting ............ 20 CONTENTS Chapters 4. Discussion 4.1 Characterize the Fred ectopic clones………………………………….….… 22 4.1.1 The asymmetric distribution of Fred and Ed in Fred ectopic clones………………...……………………………………………… 22 4.1.2 The apical surface enlargement of Fred ectopic clone cells……….... 23 4.2 The scattering phenotype of ed-RNAi+Fred clones………….…………….. 24 4.2.1 The apical surface enlargement and Ed distribution of ed-RNAi+Fred clones…………………………………………………………..……. 25 4.2.2 The role of DE-cad in the scattering phenotype……………….……. 26 4.2.3 Model of the ed-RNAi+Fred clone……………………...………….. 27 4.3 Overexpressing Fred can temporally rescue the sorting phenotype of cad-RNAi clones…………………………………………....……….…….. 28 4.4 Future expansions of the present study…………………………………….. 28 5. Figures……………………………………………………………...…………… 30 References…………………………………………..……………………….…….. 52

    Ahmed, A., Chandra, S., Magarinos, M., and Vaessin, H. (2003). Echinoid mutants exhibit neurogenic phenotypes and show synergistic interactions with the Notch signaling pathway. Development 130, 6295–6304.
    Aldaz, A., Escudero, L. M., and Freeman, M. (2010). Live imaging of Drosophila imaginal disc development. Proc. Natl. Acad. Sci. USA 107, 14217–14222.
    Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770-776.
    Bai, J., Chiu, W., Wang, J., Tzeng, T., Perrimon, N., and Hsu, J.C. (2001). The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development 128, 591–601.
    de Beco, S., Gueudry, C., Amblard, F., and Coscoy, S. (2009). Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc. Natl. Acad. Sci. USA 106, 7010–7015.
    van der Bliek, A. M. and Meyerowitz. (1991). Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411-414.
    Le Borgne, R., Bellaiche, Y., and Schweisguth, F. (2002). Drosophila E-Cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr. Biol. 12, 95-104.
    Brand, A. H. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
    Chae, J., Kim, M. J., Goo, J. H., Collier, S., Gubb, D., Charlton, J., Adler, P. N. and Park, W. J. (1999). The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family. Development 126, 5421-5429.
    Chandra, S., Ahmed, A., and Vaessin, H. (2003). The Drosophila IgC2 domain protein Friend-of-Echinoid, a paralogue of Echinoid, limits the number of sensory organ precursors in the wing disc and interacts with the Notch signaling pathway. Dev. Biol. 256, 302-316.
    Chen, M. S., Obar, R. A., Schroeder, C. C., Austin, T. W., Poodry, C. A., Wadsworth, S. C., and Vallee, R. B. (1991). Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583-586.
    Collares-Buzato C.B., Jepson M.A., McEwan G.T., Hirst B.H., Simmons N.L. (1998). Co-culture of two MDCK strains with distinct junctional protein expression: a model for intercellular junction rearrangement and cell sorting. Cell Tissue Res. 291, 267-276.
    Escudero, L.M., Wei, S.Y., Chiu, W.H., Modolell, J., and Hsu, J.C. (2003). Echinoid synergizes with the Notch signaling pathway in Drosophila mesothorax bristle patterning. Development 130, 6305–6316.
    Fetting, J. L., Spencer, S. A., and Wolff, T. (2009). The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye. Development 136, 3323-3333.
    Friedlander, D.R., Mege, R.M., Cunningham, B.A., and Edelman,G.M. (1989). Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules (CAMs) expressed on cell surface. Proc. Natl. Acad. Sci. USA 86, 7043–7047.
    Geiger B., Ayalon O. (1992) Cadherins. Annu. Rev. Cell Biol. 8, 307-332
    Georgiou, M., Marinari, E., Burden, J., and Baum, B. (2008). Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr. Biol. 18, 1631-1638.
    Giorgio, S. and Di Fiore, P. P. (2010). The endocytic matrix. Nature 463, 464-473.
    Gumbiner B.M. (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345-357
    Ho, Y. H., Lien, M. T., Lin, C. M., Wei, S. Y., Chang, L. H., and Hsu, J. C. (2010) Echinoid regulates Flamingo endocytosis to control ommatidial rotation in the Drosophila eye. Development 137, 745-754.
    Inoue, T., Tanaka, T., Takeichi, M., Chisaka, O., Nakamura, S., and Osumi, N. (2001). Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development 128, 561–569.
    Islam, R., Wei, S.Y., Chiu, W.H., Hortsch, M., and Hsu, J.C. (2003). Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway. Development 130, 2051–2059.
    Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997). The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurons and glial cells. Development 124, 761-771.
    Knox, A. L. and Brown, N. H. (2002). Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295, 1285-1288.
    Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S., and Bellaiche, Y. (2008). Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-Cadherin endocytosis. Curr. Biol. 18, 1639-1648.
    Nagaraj, R. and Banerjee, U. (2007). Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye. Development 134, 825-831.
    Ninov, N., Chiarelli, D. A., and Martin-Blanco, E. (2007). Extrinsic and intrinsic mechanisms directing epithelial cell sheet replacement during Drosophila metamorphosis. Development 134, 367-379.
    Ninov, N. and Martin-Blanco, E. (2007). Live imaging of epidermal morphogenesis during the development of the adult abdominal epidermis of Drosophila. Nat. Protoc. 2, 3074-3080.
    Nose, A., Nagafuchi, A., and Takeichi, M. (1988). Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54, 993–1001.
    Oda, H., Uemura, T., Harada, Y., Iwai, Y., and Takeichi, M. (1994). A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion. Dev. Biol. 165, 716–726.
    Palacios, F., Tushir, J. S., Fujita, Y., and D’Souza-Schorey, C. (2005). Lososomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transition. Mol. & Cellular Biol. 25, 389-402.
    Perez-Moreno, M., Jamora, C., and Fuchs, E. (2003). Sticky business: Orchestrating cellular signals at adherens junctions. Cell 112, 535–548.
    Rawlins, E.L., White, N.M., and Jarman, A.P. (2003a). Echinoid limits R8 photoreceptor specification by inhibiting inappropriate EGF receptor signalling within R8 equivalence groups. Development 130, 3715–3724.
    Rawlins, E.L., Lovegrove, B., and Jarman, A.P. (2003b). Echinoid facilitates Notch pathway signalling during Drosophila neurogenesis through functional interaction with Delta. Development 130, 6475–6484.
    Seto, E. S., Bellen, H. J., and Lloyd, T. E. (2002). When cell biology meets development: endocytic regulation of signaling pathways. Genes & Dev. 16, 1314-1336.
    Spencer, S.A., and Cagan, R.L. (2003). Echinoid is essential for regulation of Egfr signaling and R8 formation during Drosophila eye development. Development 130, 3725–3733.

    Steinberg, M.S. (1962). On the mechanism of tissue reconstruction by dissociated cells. I. Population kinetics, differential adhesiveness, and the absence of directed migration. Proc. Natl. Acad. Sci. USA 48, 1577–1582.
    Steinberg, M.S. (1963). Reconstruction of tissues by dissociated cells. Science 141, 401–408.
    Steinberg, M.S., and Takeichi, M. (1994). Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl. Acad. Sci. USA 91, 206–209.
    Struhl, G. and Basler, K. (1993). Organizing activity of wingless protein in Drosophila. Cell 72, 527-540.
    Takeichi M. (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451-1455
    Tepass, U., Godt, D. and Winklbauer, R. (2002). Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572-82.
    Townes, P. L. and Holtfreter, J. (1955). Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zoology 128, 53-120.
    Usui, T., Shima, Y., Shimada, Y., Hirano, S., Burgess, R. W., Schwarz, T. L., Takeichi, M. and Uemura, T. (1999). Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585-595.
    Wei, S.Y., Escudero, L.M., Yu, F., Chang, L.H., Chen, L.Y., Ho, Y.H., Lin, C.M., Chou C.S., Chia, W., Modolel l J., and Hsu, J.C. (2005). Echinoid is a component of adherens junctions that cooperates with DE-cadherin to mediate cell adhesion. Dev. Cell 8, 493-504.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE