簡易檢索 / 詳目顯示

研究生: 莊鎮宇
Chuang, Chen-Yu
論文名稱: 宇宙流體力學模擬在研究暗物質暈—星系連接方面的應用
Applications of Cosmological Hydrodynamic Simulations on Studying the Dark Matter Halo–Galaxy Connection
指導教授: 林彥廷
Lin, Yen-Ting
楊湘怡
Yang, Hsiang-Yi Karen
口試委員: 藍鼎文
Lan, Ting-Wen
陳建州
Chen, Chian-Chou
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 72
中文關鍵詞: 星系形成星系物理星系及暗物質暈
外文關鍵詞: halo
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 星系在我們理解宇宙結構形成的過程中扮演著至關重要的角色。對宇宙學或星系形成的任何精密研究都需要大量模擬的星系目錄。鑒於這一艱巨任務,也因為從完整的流體力學模擬或半解析模型中生成目錄過於昂貴,能夠直接將暗物質晕與星系進行對應的方法備受青睞。本論文提出了兩種模型,結合暗物質晕在只有暗物質的模擬中的性質,可以準確預測IllustrisTNG300(TNG300)模擬中關鍵的星系性質。

    第一部分,我們提出了一種新的亞暗物質晕豐度匹配(SHAM)方案,可以用僅三個自由參數準確預測恆星質量和質量相關兩點相關函數。本質上,SHAM框架是找到與星系屬性(如恆星質量)最相關的暗物質晕屬性。 Tonnesen & Ostriker (2021) 最近的一項研究表明,通過結合兩個暗物質晕屬性,一種名為φ的新屬性能夠比先前的SHAM方案更好地預測恆星質量。受到他們方法的啟發,我們發現引入一個名為ψ5的暗物質暈屬性可以進一步提高預測準確性。基於TNG300模擬的測試表明,我們的新SHAM方案可以在$z=0-2$的紅移範圍內,分別比φ改進15%的恆星質量和18%的質量相關兩點相關函數的預測。

    第二部分,我們提出了一種基於圖神經網絡(GNN)的模型,能夠藉由暗物質暈的合成歷史準確預測恆星質量、g-r顏色、恆星形成率(SFR)、氣體質量、恆星金屬豐度和氣體金屬豐度。基於TNG300模擬的測試表明,我們的模型可以在廣泛的紅移範圍(z=0-2)內高精度地重現所有星系及其元星系的重子屬性,並較現有最先進的方法有顯著改進。

    在這篇論文中,我們展示了我們的方法在理解IllustrisTNG模擬的星系形成模型方面取得了實質性進展。


    Galaxies play a crucial role in our endeavor to understand how structure formation proceeds in the Universe. For any precision study of cosmology or galaxy formation, there is a strong demand for huge sets of realistic mock galaxy catalogs. For such a daunting task, methods that can produce a direct mapping between dark matter halos and galaxies are strongly preferred, as producing mocks from full-fledged hydrodynamical (HD) simulations or semi-analytical models (SAMs) is too expensive. Here we present two models that can accurately predict key galaxies' properties in the IllustrisTNG300 (TNG300) with dark matter properties from halos in the corresponding dark matter-only (DMO) simulation.

    In Part I, we present a new Subhalo abundance matching (SHAM) scheme, which can accurately predict the stellar mass and mass-dependent clustering with just three free parameters. In essence, the SHAM framework is to find a dark matter halo property that best correlates with an attribute of galaxies, such as stellar mass. A recent study by Tonnesen & Ostriker (2021) suggested that by combining two dark matter halo properties, a new quantity φ performs better in predicting stellar mass than previous SHAM schemes. Inspired by their approach, we find that further improvement can be achieved by a quantity ψ5. Tests based on the TNG300 simulation show that our new SHAM scheme can improve the stellar mass prediction and mass-dependent clustering by 15% and 18% from φ, respectively, over the redshift range z=0-2.

    In Part II, we present a Graph Neural Network (GNN)-based model that is able to accurately predict stellar mass, g-r color, star formation rate (SFR), gas mass, stellar metallicity, and gas metallicity, from dark matter properties extracted from halos along the full assembly history of the galaxies. Tests based on the TNG300 simulation show that our model can recover the baryonic properties of galaxies to high accuracy, over a wide redshift range (z = 0-2), for all galaxies and their progenitors, with strong improvements over the state-of-the-art methods.

    We show that our methods make substantial strides toward providing an understanding of the implications of the IllustrisTNG galaxy formation model.

    Abstract (I) Acknowledgments (V) Contents (VII) List of Figures (X) List of Tables (XIV) Background (1) Part I - New Stellar Mass Proxy for Subhalo Abundance Matching (3) Part II - Leaving No Branches Behind: Predicting the Baryonic Properties of Galaxies from Merger Trees (21) Summary (41) Appendices (45) Bibliography (55)

    [1] Abdurro’uf, Yen-Ting Lin, Po-Feng Wu, and Masayuki Akiyama. Introducing piXedfit: A Spectral Energy Distribution Fitting Code Designed for Resolved Sources. apjs, 254(1):15, May 2021.

    [2] Shankar Agarwal, Romeel Dav ’e, and Bruce A. Bassett. Painting galaxies into dark matter haloes using machine learning. mnras, 478(3):3410–3422, August 2018.

    [3] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, DavidRaposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases, deep learning, and graph networks. arXiv e-prints, page arXiv:1806.01261, June 2018.

    [4] Peter Behroozi, Risa H. Wechsler, Andrew P. Hearin, and Charlie Conroy. UNIVERSEMACHINE: The correlation between galaxy growth and dark matter halo assembly from z = 0-10. mnras, 488(3):3143–3194, September 2019.

    [5] Andreas A. Berlind and David H. Weinberg. The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass. apj, 575(2):587–616, August 2002.

    [6] Katelyn Breivik, Andrew J. Connolly, K. E. Saavik Ford, Mario Juri ’c, Rachel Mandelbaum, Adam A. Miller, Dara Norman, Knut Olsen, William O’Mullane, Adrian Price-Whelan, Timothy Sacco, J. L. Sokoloski, Ashley Villar, Viviana Acquaviva, Tomas Ahumada, Yusra AlSayyad, Catarina S. Alves, Igor Andreoni, Timo Anguita, Henry J. Best, Federica B. Bianco, Rosaria Bonito, Andrew Bradshaw, Colin J. Burke, Andresa Rodrigues de Campos, Matteo Cantiello, Neven Caplar, Colin Orion Chandler, James Chan, Luiz Nicolaci da Costa, Shany Danieli, James R. A. Davenport, Giulio Fabbian, Joshua Fagin, Alexander Gagliano, Christa Gall, Nicol ’as Garavito Camargo, Eric Gawiser, Suvi Gezari, Andreja Gomboc, Alma X. Gonzalez-Morales, Matthew J. Graham, Julia Gschwend, Leanne P. Guy, Matthew J. Holman, Henry H. Hsieh, Markus Hundertmark, Dragana Ili ’c, Emille E. O. Ishida, Tomislav Jurki ’c, Arun Kannawadi, Alekzander Kosakowski, Andjelka B. Kova vcevi ’c, Jeremy Kubica, Fran ccois Lanusse, Ilin Lazar, W. Garrett Levine, Xiaolong Li, Jing Lu, Gerardo Juan Manuel Luna, Ashish A. Mahabal, Alex I. Malz, Yao-Yuan Mao, Ilija Medan, Joachim Moeyens, Mladen Nikoli ’c, Robert Nikutta, Matt O’Dowd, Charlotte Olsen, Sarah Pearson, Ilhuiyolitzin Villicana Pedraza, Mark Popinchalk, Luka C. Popovi ’c, Tyler A. Pritchard, Bruno C. Quint, Viktor Radovi ’c, Fabio Ragosta, Gabriele Riccio, Alexander H. Riley, Agata Ro .zek, Paula S ’anchez-S ’aez, Luis M. Sarro, Clare Saunders, DJor dje V. Savi ’c, Samuel Schmidt, Adam Scott, Raphael Shirley, Hayden R. Smotherman, Steven Stetzler, Kate Storey-Fisher, Rachel A. Street, David E. Trilling, Yiannis Tsapras, Sabina Ustamujic, Sjoert van Velzen, Jos ’e Antonio V ’azquez-Mata, Laura Venuti, Samuel Wyatt, Weixiang Yu, and Ann Zabludoff. From Data to Software to Science with the Rubin Observatory LSST. arXiv e-prints, page arXiv:2208.02781,August 2022.

    [7] S. E. Bryan, S. T. Kay, A. R. Duffy, J. Schaye, C. Dalla Vecchia, and C. M. Booth. The impact of baryons on the spins and shapes of dark matter haloes. mnras, 429(4):3316–3329, March 2013.

    [8] Michele Cappellari. Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. araa, 54:597–665, September 2016.

    [9] C. L. Carilli and F. Walter. Cool Gas in High-Redshift Galaxies. araa, 51(1):105–161, August 2013.

    [10] Kun Ting Eddie Chua, Annalisa Pillepich, Mark Vogelsberger, and Lars Hernquist. Shape of dark matter haloes in the Illustris simulation: effects of baryons. mnras, 484(1):476–493, March 2019.

    [11] Chen-Yu Chuang and Yen-Ting Lin. A New Stellar Mass Proxy for Subhalo Abundance Matching. apj, 944(2):207, February 2023.

    [12] Alison L. Coil, Alexander J. Mendez, Daniel J. Eisenstein, and John Moustakas. PRIMUS+DEEP2: The Dependence of Galaxy Clustering on Stellar Mass and Specific Star Formation Rate at 0.2 ¡ z ¡ 1.2. apj, 838(2):87, April 2017.

    [13] Alison L. Coil, Jeffrey A. Newman, Darren Croton, Michael C. Cooper, Marc Davis, S. M. Faber, Brian F. Gerke, David C. Koo, Nikhil Padmanabhan, Risa H. Wechsler, and Benjamin J. Weiner. The DEEP2 Galaxy Redshift Survey: Color and Luminosity Dependence of Galaxy Clustering at z raisebox-0.5ex textasciitilde 1. apj, 672(1):153–176, January 2008.

    [14] C. Conroy, R. H. Wechsler, and A. V. Kravtsov. Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time. apj, 647:201–214, August 2006.

    [15] Darren J. Croton, Adam R. H. Stevens, Chiara Tonini, Thibault Garel, Maksym Bernyk, Antonio Bibiano, Luke Hodkinson, Simon J. Mutch, Gregory B. Poole, and Genevieve M. Shattow. Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results. apjs, 222(2):22, February 2016.

    [16] Natal ’ i S. M. de Santi, Nat ’alia V. N. Rodrigues, Antonio D. Montero-Dorta, L. Raul Abramo, Beatriz Tucci, and M. Celeste Artale.
    Mimicking the halo-galaxy connection using machine learning. mnras, 514(2):2463–2478, August 2022.

    [17] Martina Donnari, Annalisa Pillepich, Dylan Nelson, Mark Vogelsberger, Shy Genel, Rainer Weinberger, Federico Marinacci, Volker Springel, and Lars Hernquist. The star formation activity of IllustrisTNG: galaxies main sequence, UVJ diagram, quenched fractions, and systematics. mnras,485(4):4817–4840, June 2019.

    [18] S. M. Fall and G. Efstathiou. Formation and rotation of disc galaxies with haloes. mnras, 193:189–206, October 1980.

    [19] Shy Genel, Greg L. Bryan, Volker Springel, Lars Hernquist, Dylan Nelson, Annalisa Pillepich, Rainer Weinberger, R ”udiger Pakmor, Federico Marinacci, and Mark Vogelsberger. A Quantification of the Butterfly Effect in Cosmological Simulations and Implications for Galaxy Scaling Relations. apj, 871(1):21, January 2019.

    [20] I. J. Good. Rational Decisions. Journal of the Royal Statistical Society: Series B (Methodological), 14(1):107–114, 12 2018.

    [21] Hong Guo, Zheng Zheng, Idit Zehavi, Haojie Xu, Daniel J. Eisenstein, David H. Weinberg, Neta A. Bahcall, Andreas A. Berlind, Johan Comparat, Cameron K. McBride, Ashley J. Ross, Donald P. Schneider, Ramin A. Skibba, Molly E. C. Swanson, Jeremy L. Tinker, Rita Tojeiro, and David A. Wake. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling of the luminosity and colour dependence in the Data Release 10. mnras, 441(3):2398–2413, July 2014.

    [22] Andrew P. Hearin, Duncan Campbell, Erik Tollerud, Peter Behroozi, Benedikt Diemer, Nathan J. Goldbaum, Elise Jennings, Alexie Leauthaud, Yao-Yuan Mao, Surhud More, John Parejko, Manodeep Sinha, Brigitta Sip”ocz, and Andrew Zentner. Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools. aj, 154(5):190, November 2017.

    [23] Andrew P. Hearin, Douglas F. Watson, Matthew R. Becker, Reinabelle Reyes, Andreas A. Berlind, and Andrew R. Zentner. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing. mnras, 444(1):729–743, October 2014.

    [24] Timothy M. Heckman and Philip N. Best. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. araa, 52:589–660, August 2014.

    [25] Jakob Herpich, Scott Tremaine, and Hans-Walter Rix. Galactic disc profiles and a universal angular momentum distribution from statistical physics. mnras, 467(4):5022–5032, June 2017.

    [26] Christian Kragh Jespersen, Miles Cranmer, Peter Melchior, Shirley Ho, Rachel S. Somerville, and Austen Gabrielpillai. Mangrove: Learning Galaxy Properties from Merger Trees. apj, 941(1):7, December 2022.

    [27] Christian Kragh Jespersen, Miles Cranmer, Peter Melchior, Shirley Ho, Rachel S. Somerville, and Austen Gabrielpillai. Mangrove: Learning Galaxy Properties from Merger Trees. apj, 941(1):7, December 2022.

    [28] Harshil M. Kamdar, Matthew J. Turk, and Robert J. Brunner. Machine learning and cosmological simulations - I. Semi-analytical models. mnras, 455(1):642–658, January 2016.

    [29] G. Kauffmann, S. D. M. White, and B. Guiderdoni. The formation and evolution of galaxies within merging dark matter haloes. mnras, 264:201–218, September 1993.

    [30] Robert C. Kennicutt and Neal J. Evans. Star Formation in the Milky Way and Nearby Galaxies. araa, 50:531–608, September 2012.

    [31] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv e-prints, page arXiv:1412.6980, December 2014.

    [32] A. V. Kravtsov, A. A. Berlind, R. H. Wechsler, A. A. Klypin, S. Gottl”ober, B. Allgood, and J. R. Primack. The Dark Side of the Halo Occupation Distribution. apj, 609:35–49, July 2004.

    [33] Alexie Leauthaud, Jeremy Tinker, Kevin Bundy, Peter S. Behroozi, Richard Massey, Jason Rhodes, Matthew R. George, Jean-Paul Kneib, Andrew Benson, Risa H. Wechsler, Michael T. Busha, Peter Capak, Marina Cortes, Olivier Ilbert, Anton M. Koekemoer, Oliver Le F ‘evre, Simon Lilly, Henry J. Mc- Cracken, Mara Salvato, Tim Schrabback, Nick Scoville, Tristan Smith, and James E. Taylor. New Constraints on the Evolution of the Stellar-to-dark Matter Connection: A Combined Analysis of Galaxy-Galaxy Lensing, Clustering, and Stellar Mass Functions from z = 0.2 to z =1. apj, 744(2):159, January 2012.

    [34] Benjamin V. Lehmann, Yao-Yuan Mao, Matthew R. Becker, Samuel W. Skillman, and Risa H. Wechsler. The Concentration Dependence of the Galaxy-Halo Connection: Modeling Assembly Bias with Abundance Matching. apj, 834(1):37, January 2017.

    [35] Y.-T. Lin, R. Mandelbaum, Y.-H. Huang, H.-J. Huang, N. Dalal, B. Diemer, H.-Y. Jian, and A. Kravtsov. On Detecting Halo Assembly Bias with Galaxy Populations. apj, 819:119, March 2016.

    [36] Yen-Ting Lin, Hironao Miyatake, Hong Guo, Yi-Kuan Chiang, Kai-Feng Chen, Ting-Wen Lan, and Yu-Yen Chang. A pair of early- and late-forming galaxy cluster samples: A novel way of studying halo assembly bias assisted by a constrained simulation. aap, 666:A97, October 2022.

    [37] Christopher C. Lovell, Stephen M. Wilkins, Peter A. Thomas, Matthieu Schaller, Carlton M. Baugh, Giulio Fabbian, and Yannick Bah ’e. A machine learning approach to mapping baryons on to dark matter haloes using the EAGLE and C-EAGLE simulations. mnras, 509(4):5046–5061, February 2022.

    [38] Shengdong Lu, Dandan Xu, Yunchong Wang, Shude Mao, Junqiang Ge, Volker Springel, Yuan Wang, Mark Vogelsberger, Jill Naiman, and Lars Hernquist. Redshift evolution of the Fundamental Plane relation in the IllustrisTNG simulation. mnras, 492(4):5930–5939, March 2020.

    [39] Piero Madau and Mark Dickinson. Cosmic Star-Formation History. araa, 52:415–486, August 2014.

    [40] R. Mandelbaum, W. Wang, Y. Zu, S. White, B. Henriques, and S. More. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing. mnras, 457:3200–3218, April 2016.

    [41] Federico Marinacci, Mark Vogelsberger, R ”udiger Pakmor, Paul Torrey, Volker Springel, Lars Hernquist, Dylan Nelson, Rainer Weinberger, Annalisa Pillepich, Jill Naiman, and Shy Genel. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. mnras, 480(4):5113–5139, November 2018.

    [42] F. Marulli, M. Bolzonella, E. Branchini, I. Davidzon, S. de la Torre, B. R. Granett, L. Guzzo, A. Iovino, L. Moscardini, A. Pollo, U. Abbas, C. Adami, S. Arnouts, J. Bel, D. Bottini, A. Cappi, J. Coupon, O. Cucciati, G. De Lucia, A. Fritz, P. Franzetti, M. Fumana, B. Garilli, O. Ilbert, J. Krywult, V. Le Brun, O. Le F ‘evre, D. Maccagni, K. Ma lek, H. J. McCracken, L. Paioro, M. Polletta, H. Schlagenhaufer, M. Scodeggio, L. A. M. Tasca, R. Tojeiro, D. Vergani, A. Zanichelli, A. Burden, C. Di Porto, A. Marchetti, C. Marinoni, Y. Mellier, R. C. Nichol, J. A. Peacock, W. J. Percival, S. Phleps, M. Wolk, and G. Zamorani. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1. aap, 557:A17, September 2013.

    [43] S. Masaki, Y.-T. Lin, and N. Yoshida. Modelling colour-dependent galaxy clustering in cosmological simulations. mnras, 436:2286–2300, December 2013.

    [44] Shogo Masaki, Daichi Kashino, and Yen-Ting Lin. Subhalo abundance matching using progenitor mass.
    arXiv e-prints, page arXiv:2210.11713, October 2022.

    [45] Stuart McAlpine, John C. Helly, Matthieu Schaller, Till Sawala, Guilhem Lavaux, Jens Jasche, Carlos S. Frenk, Adrian Jenkins, John R. Lucey, and Peter H. Johansson. SIBELIUS-DARK: a galaxy catalogue of the local volume from a constrained realization simulation. mnras, 512(4):5823–5847, June 2022.

    [46] H. J. McCracken, M. Wolk, S. Colombi, M. Kilbinger, O. Ilbert, S. Peirani, J. Coupon, J. Dunlop, B. Milvang-Jensen, K. Caputi, H. Aussel, M. B ’ethermin, and O. Le F ‘evre. Probing the galaxy-halo connection in UltraVISTA to z ~ 2. mnras, 449(1):901–916, May 2015.

    [47] Matthew McQuinn. The Evolution of the Intergalactic Medium. araa, 54:313–362, September 2016.

    [48] H. J. Mo, Shude Mao, and Simon D. M. White. The formation of galactic discs. mnras, 295(2):319–336, April 1998.

    [49] Houjun Mo, Frank C. van den Bosch, and Simon White. Galaxy Formation and Evolution. 2010.

    [50] Benjamin P. Moster, Thorsten Naab, and Simon D. M. White. EMERGE - an empirical model for the formation of galaxies since z∼10. mnras, 477(2):1822–1852, June 2018.

    [51] Thorsten Naab and Jeremiah P. Ostriker. Theoretical Challenges in Galaxy Formation. araa, 55(1):59–109, August 2017.

    [52] Jill P. Naiman, Annalisa Pillepich, Volker Springel, Enrico Ramirez-Ruiz, Paul Torrey, Mark Vogelsberger, R ”udiger Pakmor, Dylan Nelson, Federico Marinacci, Lars Hernquist, Rainer Weinberger, and Shy Genel. First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium. mnras, 477(1):1206–1224, June 2018.

    [53] D. Nelson, A. Pillepich, S. Genel, M. Vogelsberger, V. Springel, P. Torrey, V. Rodriguez-Gomez, D. Sijacki, G. F. Snyder, B. Griffen, F. Marinacci, L. Blecha, L. Sales, D. Xu, and L. Hernquist. The illustris simulation: Public data release. Astronomy and Computing, 13:12–37, November 2015.

    [54] Dylan Nelson, Annalisa Pillepich, Volker Springel, Rainer Weinberger, Lars Hernquist, R ”udiger Pakmor, Shy Genel, Paul Torrey, Mark Vogelsberger, Guinevere Kauffmann, Federico Marinacci, and Jill Naiman. First results from the IllustrisTNG simulations: the galaxy colour bimodality. mnras, 475(1):624–647, March 2018.

    [55] Dylan Nelson, Volker Springel, Annalisa Pillepich, Vicente Rodriguez-Gomez, Paul Torrey, Shy Genel, Mark Vogelsberger, Ruediger Pakmor, Federico Marinacci, Rainer Weinberger, Luke Kelley, Mark Lovell, Benedikt Diemer, and Lars Hernquist. The IllustrisTNG simulations: public data release. Computational Astrophysics and Cosmology
    , 6(1):2, May 2019.

    [56] Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power for Node Classification. arXiv e-prints, page arXiv:1905.10947, May 2019.

    [57] Ruediger Pakmor, Volker Springel, Jonathan P. Coles, Thomas Guillet, Christoph Pfrommer, Sownak Bose, Monica Barrera, Ana Maria Delgado, Fulvio Ferlito, Carlos Frenk, Boryana Hadzhiyska, C ́
    esar Hern ́andez-Aguayo, Lars Hernquist, Rahul Kannan, and Simon D. M. White. The MillenniumTNG Project: The hydrodynamical full physics simulation and a first look at its galaxy clusters. arXiv e-prints, page arXiv:2210.10060, October 2022.

    [58] Annalisa Pillepich, Dylan Nelson, Lars Hernquist, Volker Springel, R ”udiger Pakmor, Paul Torrey, Rainer Weinberger, Shy Genel, Jill P. Naiman, Federico Marinacci, and Mark Vogelsberger. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. mnras, 475(1):648–675, March 2018.

    [59] Annalisa Pillepich, Dylan Nelson, Lars Hernquist, Volker Springel, R ”udiger Pakmor, Paul Torrey, Rainer Weinberger, Shy Genel, Jill P. Naiman, Federico Marinacci, and Mark Vogelsberger. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. mnras, 475(1):648–675, Mar 2018.

    [60] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, E. Battaner, R. Battye, K. Benabed, A. Benoˆıt, A. Benoit-L ́evy, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso, A. Catalano, A. Challinor, A. Chamballu, R. R. Chary, H. C. Chiang, J. Chluba, P. R. Christensen, S. Church, D. L. Clements, S. Colombi, L. P. L. Colombo, C. Combet, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, F. X. D ́
    esert, E. Di Valentino, C. Dickinson, J. M. Diego, K. Dolag, H. Dole, S. Donzelli, O. Dor ́
    e, M. Douspis, A. Ducout, J. Dunkley, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, M. Farhang, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, C. Gauthier, M. Gerbino, T. Ghosh, M. Giard, Y. Giraud-H ́eraud, E. Giusarma, E. Gjerløw, J. Gonz ́alez-Nuevo, K. M. G ́orski, S. Gratton, A. Gregorio, A. Gruppuso, J. E. Gudmundsson, J. Hamann, F. K. Hansen, D. Hanson, D. L. Harrison, G. Helou, S. Henrot-Versill ́
    e, C. Hern ́andez-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest, Z. Huang, K. M. Huffenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C. Jones, M. Juvela, E. Keihanen, R. Keskitalo, T. S. Kisner, R. Kneissl, J. Knoche, L. Knox, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lahteenmaki, J. M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, J. P. Leahy, R. Leonardi, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Linden-Vørnle, M. L ́
    opez-Caniego, P. M. Lubin, J. F. Mac ́
    ıas-P ́erez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marchini, M. Maris, P. G. Martin, M. Martinelli, E. Mart ́ınez-Gonz ́alez, S. Masi, S. Matarrese, P. McGehee, P. R. Meinhold, A. Melchiorri, J. B. Melin, L. Mendes, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M. A. Miville-Deschˆ
    enes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, A. Moss, D. Munshi, J. A. Murphy, P. Nasel- sky, F. Nati, P. Natoli, C. B. Netterfield, H. U. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, C. A. Oxborrow, F. Paci, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, B. Partridge, F. Pasian, G. Patanchon, T. J. Pearson, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, L. Popa, G. W. Pratt, G. Pr ́ezeau, S. Prunet, J. L. Puget, J. P. Rachen, W. T. Reach, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, B. Rouill ́e d’Orfeuil, M. Rowan-Robinson, J. A. Rubi ̃no-Mart ́ın, B. Rusholme, N. Said, V. Salvatelli, L. Salvati, M. Sandri, D. Santos, M. Savelainen, G. Savini, D. Scott, M. D. Seiffert, P. Serra, E. P. S. Shellard, L. D. Spencer, M. Spinelli, V. Stolyarov, R. Stompor, R. Sudiwala, R. Sunyaev, D. Sutton, A. S. Suur-Uski, J. F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, T. Trombetti, M. Tucci, J. Tuovinen, M. T ̈
    urler, G. Umana, L. Valenziano, J. Valiviita, F. Van Tent, P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K. Wehus, M. White, S. D. M. White, A. Wilkinson, D. Yvon, A. Zacchei, and A. Zonca. Planck 2015 results. XIII. Cosmological parameters. aap, 594:A13, September 2016.

    [61] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck 2015 results. XIII. Cosmological parameters. aap, 594:A13, September 2016.

    [62] Rachel M. Reddick, Risa H. Wechsler, Jeremy L. Tinker, and Peter S. Behroozi. The Connection between Galaxies and Dark Matter Structures in the Local Universe. apj, 771(1):30, July 2013.

    [63] Vicente Rodriguez-Gomez, Shy Genel, Mark Vogelsberger, Debora Sijacki, Annalisa Pillepich, Laura V. Sales, Paul Torrey, Greg Snyder, Dylan Nelson, Volker Springel, Chung-Pei Ma, and Lars Hernquist. The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models. mnras, 449(1):49–64, May 2015.

    [64] Graziano Rossi, Peter D. Choi, Jeongin Moon, Julian E. Bautista, Hector GilMar ’ in, Romain Paviot, Mariana Vargas-Magana, Sylvain de la Torre, Sebastien Fromenteau, Ashley J. Ross, Santiago ’Avila, Etienne Burtin, Kyle S. Dawson, St ’ephanie Escoffier, Salman Habib, Katrin Heitmann, Jiamin Hou, Eva-Maria Mueller, Will J. Percival, Alex Smith, Cheng Zhao, and Gong-Bo Zhao. The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body mock challenge for galaxy clustering measurements. mnras, 505(1):377–407, July 2021.

    [65] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv e-prints, page arXiv:1609.04747, September 2016.

    [66] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

    [67] Manodeep Sinha and Lehman Garrison. Corrfunc: Blazing fast correlation functions with avx512f simd intrinsics. In Amit Majumdar and Ritu Arora, editors, Software Challenges to Exascale Computing, pages 3–20, Singapore, 2019. Springer Singapore.

    [68] Manodeep Sinha and Lehman H. Garrison. CORRFUNC - a suite of blazing fast correlation functions on the CPU. mnras, 491(2):3022–3041, Jan 2020.

    [69] Ramin A. Skibba, M. Stephen M. Smith, Alison L. Coil, John Moustakas, James Aird, Michael R. Blanton, Aaron D. Bray, Richard J. Cool, Daniel J. Eisenstein, Alexander J. Mendez, Kenneth C. Wong, and Guangtun Zhu. PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1. apj, 784(2):128, April 2014.

    [70] Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates. arXiv e-prints, page arXiv:1708.07120, August 2017.

    [71] Rachel S. Somerville and Romeel Dav ’e. Physical Models of Galaxy Formation in a Cosmological Framework. araa, 53:51–113, August 2015.

    [72] Rachel S. Somerville, Philip F. Hopkins, Thomas J. Cox, Brant E. Robertson, and Lars Hernquist. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. mnras, 391(2):481–506, December 2008.

    [73] Rachel S. Somerville, Gergo Popping, and Scott C. Trager. Star formation in semi-analytic galaxy formation models with multiphase gas. mnras, 453(4):4337–4367, November 2015.

    [74] J. S. Speagle, C. L. Steinhardt, P. L. Capak, and J. D. Silverman. A Highly Consistent Framework for the Evolution of the Star-Forming “Main Sequence” from z ̃0-6. apjs, 214(2):15, October 2014.

    [75] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce. Simulations of the formation, evolution and clustering of galaxies and quasars. nat, 435:629–636, June 2005.

    [76] Volker Springel, R ”udiger Pakmor, Annalisa Pillepich, Rainer Weinberger, Dylan Nelson, Lars Hernquist, Mark Vogelsberger, Shy Genel, Paul Torrey, Federico Marinacci, and Jill Naiman. First results from the IllustrisTNG simulations: matter and galaxy clustering. mnras, 475(1):676–698, March 2018.

    [77] Volker Springel, Simon D. M. White, Giuseppe Tormen, and Guinevere Kauffmann. Populating a cluster of galaxies - I. Results at [formmu2]z=0. mnras, 328(3):726–750, December 2001.

    [78] Richard Stiskalek, Harry Desmond, Thomas Holvey, and Michael G. Jones. The dependence of subhalo abundance matching on galaxy photometry and selection criteria. mnras, 506(3):3205–3223, September 2021.

    [79] Argyro Tasitsiomi, Andrey V. Kravtsov, Risa H. Wechsler, and Joel R. Primack. Modeling Galaxy-Mass Correlations in Dissipationless Simulations. apj, 614(2):533–546, October 2004.

    [80] Stephanie Tonnesen and Jeremiah P. Ostriker. An Improved and Physically Motivated Scheme for Matching Galaxies with Dark Matter Halos. apj, 917(2):66, August 2021.

    [81] Jason Tumlinson, Molly S. Peeples, and Jessica K. Werk. The Circumgalactic Medium. araa, 55(1):389–432, August 2017.

    [82] A. Vale and J. P. Ostriker. Linking halo mass to galaxy luminosity. mnras, 353(1):189–200, September 2004.

    [83] Premvijay Velmani and Aseem Paranjape. The quasi-adiabatic relaxation of haloes in the IllustrisTNG and EAGLE cosmological simulations. mnras, 520(2):2867–2886, April 2023.

    [84] Francisco Villaescusa-Navarro, Daniel Angl ́
    es-Alc ́azar, Shy Genel, David N. Spergel, Rachel S. Somerville, Romeel Dave, Annalisa Pillepich, Lars Hernquist, Dylan Nelson, Paul Torrey, Desika Narayanan, Yin Li, Oliver Philcox, Valentina La Torre, Ana Maria Delgado, Shirley Ho, Sultan Hassan, Blakesley Burkhart, Digvijay Wadekar, Nicholas Battaglia, Gabriella Contardo, and Greg L. Bryan. The CAMELS Project: Cosmology and Astrophysics with Machine-learning Simulations. apj, 915(1):71, July 2021.

    [85] Francisco Villaescusa-Navarro, ChangHoon Hahn, Elena Massara, Arka Banerjee, Ana Maria Delgado, Doogesh Kodi Ramanah, Tom Charnock, Elena Giusarma, Yin Li, Erwan Allys, Antoine Brochard, Cora Uhlemann, Chi-Ting Chiang, Siyu He, Alice Pisani, Andrej Obuljen, Yu Feng, Emanuele Castorina, Gabriella Contardo, Christina D. Kreisch, Andrina Nicola, Justin Alsing, Roman Scoccimarro, Licia Verde, Matteo Viel, Shirley Ho, Stephane Mallat, Benjamin Wandelt, and David N. Spergel. The Quijote Simulations. apjs, 250(1):2, September 2020.

    [86] Huiyuan Wang, H. J. Mo, Xiaohu Yang, Youcai Zhang, JingJing Shi, Y. P. Jing, Chengze Liu, Shijie Li, Xi Kang, and Yang Gao. ELUCID - Exploring the Local Universe with ReConstructed Initial Density Field III: Constrained Simulation in the SDSS Volume. apj, 831(2):164, November 2016.

    [87] Risa H. Wechsler and Jeremy L. Tinker. The Connection Between Galaxies and Their Dark Matter Halos. araa, 56:435–487, September 2018.

    [88] Risa H. Wechsler and Jeremy L. Tinker. The Connection Between Galaxies and Their Dark Matter Halos. araa, 56:435–487, September 2018.

    [89] S. D. M. White and M. J. Rees. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. mnras, 183:341–358, May 1978.

    [90] Simon D. M. White and Carlos S. Frenk. Galaxy Formation through Hierarchical Clustering. apj, 379:52, September 1991.

    [91] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. arXiv e-prints, page arXiv:1901.00596, January 2019.

    [92] Idit Zehavi, Zheng Zheng, David H. Weinberg, Michael R. Blanton, Neta A. Bahcall, Andreas A. Berlind, Jon Brinkmann, Joshua A. Frieman, James E. Gunn, Robert H. Lupton, Robert C. Nichol, Will J. Percival, Donald P. Schneider, Ramin A. Skibba, Michael A. Strauss, Max Tegmark, and Donald G. York. Galaxy Clustering in the Completed SDSS Redshift Survey: The Dependence on Color and Luminosity. apj, 736(1):59, July 2011.

    [93] Andrew R. Zentner, Andrew P. Hearin, and Frank C. van den Bosch. Galaxy assembly bias: a significant source of systematic error in the galaxy-halo relationship. mnras, 443(4):3044–3067, October 2014.

    [94] Zheng Zheng, Andreas A. Berlind, David H. Weinberg, Andrew J. Benson, Carlton M. Baugh, Shaun Cole, Romeel Dav ́e, Carlos S. Frenk, Neal Katz, and Cedric G. Lacey. Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies. apj, 633(2):791–809, November 2005.

    [95] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph Neural Networks: A Review of Methods and Applications. arXiv e-prints, page arXiv:1812.08434, December 2018.

    QR CODE