研究生: |
游智凱 Yu, Chih-Kai |
---|---|
論文名稱: |
金屬材料於平面應變下裂縫前端之彈塑性分析 |
指導教授: |
蔣長榮
Chiang, Chun-Ron |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 尖端裂縫 、塑性區 、平面應變 、應力強度因子 、有限元素 |
外文關鍵詞: | crack tip, plastic zone, plane strain, stress intensity factor, finite element |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討含有裂縫之材料結構受力時,當裂縫尖端所受之應力超過其降伏應力後,便會產生塑性變形,其塑性區之形狀關係著材料結構的破裂行為。本文根據破裂力學的原理,撰寫成程式計算出模型的邊界條件,並利用ANSYS工程分析軟體建立模型。在小尺度塑性變形的條件下,模擬一均向性(Isotropic)材料平板處於Mode-I張開型的裂縫時,改變應力強度因子(Stress Intensity Factor) ,求得裂縫尖端之應力、應變與塑性區分佈。並探討改變不同材料之應變硬化率對其影響。基於材料特性故以雙線性(Bilinear)力學模型及隨動硬化規則(Kinematic Hardening)來進行模擬。
由文中結果可知,裂縫尖端產生塑性變形後,發生了尖端鈍化的現象,故其應力為有限值。且材料於不同應變硬化率時會對塑性區內應力及應變分佈有所改變,對於外圍彈性區則影響不大。
Crack tip plastic zone is a very important factor in the fracture behavior of metallic materials. To simulate the plastic deformation at the crack tip, the principle of fracture mechanics is implemented in finite element method (FEM) and ANSYS engineering analysis software. For a homogeneous and isotropic material under Mode-I loading and small scale yielding condition, we change its stress intensity factor (SIF) and material strain hardening rate (SHR) to obtain the stress-strain distribution of the crack tip. The material property depends on bilinear mechanics model and kinematics hardening rule.
From the result of this study, plastic deformation has occurred and led it to a blunt crack tip. So the stress value at the crack tip is a finite value. Also different material strain hardening rate has strongly influence to its stress-strain distribution in the plastic zone.
[1] A. A. Griffith, “The phenomena of rupture and flow in solid,” Philosophical Transactions of the Royal Society of London, Sereis A, 221, pp. 163-198, 1920.
[2] G. R. Irwin, “Analysis of stresses and strains near the end of a crack travrsing a plate,” Journal of the Applied Mechanics, Vol. 24, pp.361-364, 1957.
[3] J. R. Rice, “Mathematical analysis in the mechanics of fracture,” Academic Press, pp. 191-311, 1968.
[4] A. R. Duffy, et al., “Fracture design practice for pressure piping,” Fracture I, Academic Press, pp. 159-232, 1969.
[5] I. S. Tuba, “A method of elastic-plastic plane stress and strain analysis,” Journal of Strain Analysis, Vol. 1, pp. 115-122, 1966.
[6] J. R. Rice, and G. F. Rosengren, “Plane strain deformation near a crack tip in a power-law hardening material,” Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 1-23, 1968.
[7] D. Broek, “Elementary Engineering Fracture Mechanics,” 4th ed., Martinus Nijhoff Publishers, Boston, 1986.
[8] 徐秉業、劉信聲,“應用彈塑性力學”,凡異出版社,新竹(台灣),1997.
[9] R. A. C. Slater, “Engineering Plasticity,” The Macmillan Press LTD,
1977.
[10] R. D. Cook, D. S. Malkus, and M. E. Plesha, “Concepts and
application of finite element analysis”, 4th ed., John Wiley and Sons, Inc., 2002.
[11] 陳新郁、林政仁,“有限元素分析-理論與應用ANSYS”,高立圖書有限公司,台北(台灣),2001。
[12] 陳精一、蔡國忠,“電腦輔助工程分析ANSYS 使用指南”,全華 科技圖書股份有限公司,台北(台灣),2000。
[13] 康淵、陳信吉,“ANSYS 入門”,全華科技圖書股份有限公司,台北(台灣),2002。
[14] R. D. Cook, W. C. Young, “Advanced mechanics of materials”, 2nd ed., Prentice Hall International, Inc., 1999.
[15] ANSYS Structure Analysis Guide, ANSYS, Inc., Canonsburg, 1997.