簡易檢索 / 詳目顯示

研究生: 林健瑋
論文名稱: 高溫高壓水氣轉移反應薄膜反應器 之鈀膜位置位移數值模擬
Numerical Modeling on the High-temperature High-pressure Water Gas Shift Reaction in Membrane Reactors with Membrane Position Offset
指導教授: 許文震
陳炎洲
口試委員: 許文震
陳炎洲
王訓忠
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 42
中文關鍵詞: 水氣轉移反應膜反應器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數值模擬探討膜反應器中的水煤氣轉化反應之氫氣生產性能分析。主要以反應器之鈀膜擺放位置作為主要參數來探討,對於反應器氫氣滲透量之影響。反應操作壓力、溫度以及進料水氣/一氧化碳莫耳比例分別為15大氣壓、450℃以及 1,在數值模擬研究的基礎上,其進料為模擬煤碳氣化的合成氣,其組成成分中含有水氣、一氧化碳、氫氣、二氧化碳以及氮氣。利用可變密度納維-斯托克斯方程式、史蒂芬-馬克斯威爾方程式以及廣義熱傳方程式來進行數值模擬求解,在本研究中,主要對軸對稱之二維模型來做深入探討。
    由數值模擬結果發現,當把催化劑段(8cm)固定在反應器入口處,反應器長度固定為20cm,並將鈀膜放置位置往反應器出口方向移動,其可提升約11% 之氫氣回收率。當水氣轉移反應溫度提升,氫氣回收率增高,而一氧化碳轉化率降低,鈀膜位移效應的影響增加。提高進料水氣/一氧化碳比例,一氧化碳轉化率提高,而氫氣回收率下降。增加鈀膜厚度,氫氣回收率及一氧化碳轉化率皆降低。反應端進料流速降低,氫氣回收率及一氧化碳轉化率皆增高,但鈀膜位移效應的影響減少。


    第一章 緒論 3 1.1 前言 3 1.2 文獻回顧 5 1.3 研究目的 9 第二章 水氣轉移薄膜反應器 10 第三章 數學模式與數值方法 13 3.1 物理說明與基本假設 13 3.2 統御方程式 14 3.2.1 質量守恆方程式 14 3.2.2 動量方程式 14 3.2.3 能量方程式 15 3.2.4 成份方程式 16 3.2.5化學反應 16 3.2.6 滲透方程式 Sievert’s Law 18 3.3邊界條件 19 3.4數值方法 21 第四章 結果與討論 22 4.1數值模擬參數 22 4.2數值模型模擬結果比較 22 4.3操作溫度之影響 24 4.4水氣/一氧化碳進料比例之影響 25 4.5改變反應器鈀膜厚度之影響 26 4.6改變反應器進料氣體流速之影響 26 第五章 結論與未來展望 37 5.1 結論 37 5.2 未來展望 38 參考文獻 39

    [1] R. Killmeyer, B. Howard, M. Ciocco, B. Morreale, R. Enick, F. Bustamante, “Water-gas shift membrane reactor studies,” National Energy Technology Laboratory, 2004.
    [2] K. Gosiewski, K. Warmuzinski, M. Tanczyk, “Mathematical simulation of WGS membrane reactor for gas from coal gasification,” Catalysis Today, Vol.156, pp.229-236, 2010.
    [3] S. Uemiya, N. Sato, “The water gas shift reaction assisted by a palladium membrane reactor. Industrial & Engineering Chemistry Research,”. Vol.30(3), pp. 585-589, 1991.
    [4] R. J. B. Smith , L. Muruganandam, M. S. Shantha, “CFD simulation of water gas shift membrane reactor-pressure effects on the performance of the reactor,” Chemical Product and Process Modeling, Vol.6(1), pp.33-55, 2011.
    [5] E. Kikuchi, S. Uemiya, N. Sato, H. Inoue, H., H. Ando, and T. Matsuda, “Membrane reactor using microporous glass-supported thin film of palladium, Application to the water-gas shift reaction,” Chemistry Letters, Vol., pp.489-490, 1989.
    [6] 吳和生, 製氫觸媒介紹. 化工, Vol.53(5), pp.3-19, 2006.
    [7] M. Amano, C. Nishimura, M. Komaki, “Effect of High Concentration of CO and CO2 on Hydrogen Permeation through the Palladium Membrane,” Materials Transactions Jim, Vol.31, pp.404-405, 1990.
    [8] A. Criscuoli, A. Basile, E. Drioli,“An analysis of the performance of membrane reactors for the water-gas shift reaction using gas feed mixtures,” Catalysis Today, Vol.56, pp.53-64, 2000.
    [9] 陳盈儒,“鈀銀合金膜反應器進行水煤氣轉化反應之研究,” 逢甲大學碩士論文,化學工程研究所,2009.
    [10] J.M. Sanchez, M.M. Barreiro, M. Marono, “Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor,” Biomass and Bioenergy, Vol.35, pp.s132-s144, 2011.
    [11] D. Mendes, V. Chibante, J. M. Zheng, S. Tosti, F. Borgognoni, A. Mendes, L. M. Madeira, “Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactors,” International Journal of Hydrogen Energy, Vol.35, pp.12596-12608, 2010.
    [12] P. Pinacci, M. Broglia, C. Valli, G. Capannelli, A. Comite, “Evaluation of the water gas shift reaction in a palladium membrane reactor,” Catalysis Today, Vol.156, pp.165-172, 2010.
    [13] A.S. Augustine, Y. H. Ma, N. K. Kazantzis, “High pressure palladium membrane reactor for the high temperature wateregas shift reaction,” International Journal of Hydrogen Energy, Vol.36, pp.5350-5360, 2011.
    [14] J.C.D. Costa, G. P. Reed and K. Thambimuthu, “High temperature gas separation membranes in coal gasification,” Energy Procedia, Vol.1, pp.295-302, 2009.
    [15] D. Mendes, S. Sa, S. Tosti, J. M. Sousa, L. M. Madeira, A. Mendes, “Experimental and modeling studies on the low-temperature water-gas shift reaction in a dense Pd–Ag packed-bed membrane reactor,” Chemical Engineering Science, Vol.66, pp.2356-2367, 2011.
    [16] K. Hou, R. Hughes, “The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes,” Journal of Membrane Science, Vol.206(1-2), pp.119-130, 2002.
    [17] A. Brunetti, G. Barbieri, E. Drioli, K.H. Lee, “A porous stainless steel supported silica membrane for WGS reaction in a catalytic membrane reactor,” Chemical Engineering Science, Vol.62, pp.5621-5626, 2007b.
    [18] K. Gosiewski, M. Tanczyk, “Applicability of membrane reactor for WGS coal derived gas processing: simulation-based analysis,” Catalysis Today, Vol.176, pp.373-382, 2011.
    [19]林郁翔,“以薄膜反應器進行高溫高壓水氣轉移反應之數值模擬,” 中興大學碩士論文,機械工程研究所,2012。
    [20] O. U. Iyoha, “H2 production palladium & palladium-copper membrane reactors at 1173K in the presence of H2S,” University of Pittsburgh, 2007.
    [21] R.Y. Chein, Y.C. Chen, H.J. Zhu, J.N. Chung, “Numerical simulation of flow disturbance and heat transfer effects on the methanol-steam reforming in miniature annulus type reformers,” Energy & Fuels, 2012.
    [22] R.Y. Chein, Y.C. Chen, H.J. Zhu, J.N. Chung, “A parametric study of membrane reactors for hydrogen production via high-temperature water gas shift reaction,” International Journal of Hydrogen Energy, Vol.38(5), 2013.
    [23] G. Chiappetta, G. Clarizia, E. Drioli, “Theoretical analysis of the effect of catalyst mass distribution and operation parameters on the performance of a Pd-based membrane reactor for water-gas shift reaction,” Chemical Engineering Journal, Vol.136(2-3), 2008.
    [24] P. Marin, F.V. Diez, S. Ordonez, “Fixed bed membrane reactors for WGSR-based hydrogen production: Optimization of modeling approaches and reactor performance,” International Journal of Hydrogen Energy, Vol.37, pp.4997-5010, 2012.
    [25] T.A. Adams, P.I. Barton, “A dynamic two-dimensional heterogeneous model for water gas shift reactors,” International Journal of Hydrogen Energy, Vol.34, pp.8877-8891, 2009.
    [26] M. Parvazinia, V. Nassehi, R. Wakeman, M. Ghoreishy, “Finite element modeling of flow through a porous medium between two parallel plates using the Brinkman equation,” Transp. Porous Media, Vol.63, pp.71-90, 2006.
    [27] M. Phanikumar, R. Mahajan, “Non-Darcy natural convection in high porosity metal Foams,” Int. J. Heat Mass Transfer, Vol.45, pp.3781-93, 2002.
    [28] J.A. Francesconi, M.C. Mussati, P.A. Aguirre, “Analysis of design variables for water–gas-shift reactors by model-based optimization,” J Power Sources, Vol.173, pp.467–77, 2007.
    [29] S.S. Hla, D. Park, G.J. Duffy, J.H. Edwards, D.G. Roberts, A. Ilyushechkin, et al. “Kinetics of high-temperature water–gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngas,” Chem Eng J, Vol.146, pp.148–54, 2009.
    [30] R. Koc, N.K. Kazantzis, Y.H. Ma, “A process dynamic modeling and control framework for performance assessment of Pd/alloy-based membrane reactors used in hydrogen production,”, 2012.
    [31] G.S. Madia, G. Barbieri, E. Drioli, “Theoretical and experimental analysis of methane steam reforming in a membrane reactor,” Can. J. Chem. Eng, Vol.77, pp.698-706, 1999.
    [32] A. Sieverts, W. Danz, “Solubilities of D2 and H2 in palladium,” Z.Phys. Chem.,
    Abt. B, Vol.34, pp.158-159, 1936.
    [33] L. Ward, T. Dao “Model of hydrogen permeation behavior in palladium
    Membranes,” J. Membrane Sci , Vol.153, pp.211-231, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE