研究生: |
夏瑞棠 Sarita, Aryal |
---|---|
論文名稱: |
陰道滴蟲中TvCyP1和TvCyP2蛋白質的結構研究及其與Myb 3轉錄因子的關係 Structural studies on cyclophilins 1 & 2, and their associations with Myb 3 transcription factor from Trichomonas vaginalis |
指導教授: |
陳金榜
Chen, Chinpan 江昀緯 博士 Chiang, Yun-Wei |
口試委員: |
余慈顏
Yu, Tsyr-Yan 徐駿森 Hsu, Chun-Hua 林世昌 Lin, Su Chang |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 127 |
中文關鍵詞: | 親環蛋白質 、X光 |
外文關鍵詞: | Cyclophilin, X-ray |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在陰道滴蟲中,親環蛋白質對移除細胞膜上的Myb蛋白質並協助其進入細胞核起著至關重要的作用,之前的研究顯示,TvCyP1和TvCyP2可與Myb1和Myb3相互作用,並調節Myb1和Myb3蛋白質進入細胞核;與TvCyP1的二聚體結構相比,TvCyP2為單體結構並在N端多了一段延伸的片段,而且兩個蛋白質在調節Myb蛋白質運輸中發揮了不同的作用。我們解析了TvCyP2在不同條件下的四個X-ray晶體結構,所有結構均顯示N端延伸片段與相鄰TvCyP2的活性位點相互作用,這是一種不尋常的相互作用,所以也利用NMR技術來研究,結果顯示水溶液狀態下這種特殊的相互作用仍然存在,並且N端延伸片段似乎也可以和細胞膜發生作用,TvCyP2和TvCyP2-ΔN(不含N端延伸片段的TvCyP2)的細胞體內研究表明,兩種蛋白質確實有不同的亞細胞定位。為了深入了解陰道滴蟲中的蛋白質運輸,在這篇研究論文中,我們闡明了TvCyP1和TvCyP2與Myb3相互作用的分子基礎,我們解析出了TvCyP1/Myb3胜肽的複合物X-ray晶體結構,借助NMR和等溫滴定量熱法(ITC)研究,我們描繪出了Myb3的TvCyP2結合序列(Myb3 50-87),也了解Myb3與TvCyP1的結合比起與TvCyP2更具物理性;總之,這個研究提供了TvCyP1-Myb3相互作用的詳細結構分析以及TvCyP1和TvCyP2之間的差異研究,可以為設計藥物以治療抗藥菌株提供良好的基礎。
In Trichomonas vaginalis (T. vaginalis), cyclophilins play a vital role in dislodging Myb proteins from the membrane compartment and leading them to nuclear translocation. It is shown that in T. vaginalis, (TvCyp1) and (TvCyP2) interacts with Myb1 and Myb3 to regulate the nuclear translocation of Myb1 and Myb3 proteins. In comparison to TvCyp1, TvCyP2 containing an extended segment at the N-terminus (N-terminal segment) formed a monomer and showed a different role in regulating protein trafficking. Four X-ray structures of TvCyP2 were determined under various conditions, all showing the N-terminal segment interacting with the active site of a neighboring TvCyP2, an unusual interaction. NMR study revealed that this particular interaction exists in solution as well and also, the N-terminal segment seems to interact with the membrane. In vivo studies of TvCyP2 and TvCyP2-∆N (TvCyP2 without the N-terminal segment) indicated that both proteins have different subcellular localization.
To gain further insight into protein trafficking in the parasite, we also unraveled the molecular basis of the interaction of TvCyP1 and TvCyP2 with Myb3. We determined the X-ray structure of TvCyP1 in complexed with Myb3 peptide. With the aid of NMR and isothermal titration calorimetry (ITC) studies, we also mapped the TvCyP2-binding sequence of Myb3 (Myb350–87) as the binding motif. The study suggested that the binding of Myb3 with TvCyP1 is stronger than binding with TvCyP2. Together, the detailed structural insights on TvCyP1-Myb3 interaction and comparative study between TvCyP1 and TvCyP2 provided here could pave the way for newer drugs to treat drug-resistant strains.
1. Tsong, T.Y., Detection of three kinetic phases in the thermal unfolding of ferricytochrome c. Biochemistry, 1973. 12(12): p. 2209-14.
2. Brandts, J.F., H.R. Halvorson, and M. Brennan, Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry, 1975. 14(22): p. 4953-63.
3. Fischer, G., H. Bang, and C. Mech, [Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides]. Biomed Biochim Acta, 1984. 43(10): p. 1101-11.
4. Fischer, G., et al., Conformational specificity of chymotrypsin toward proline-containing substrates. Biochim Biophys Acta, 1984. 791(1): p. 87-97.
5. Fischer, G. and H. Bang, The refolding of urea-denatured ribonuclease A is catalyzed by peptidyl-prolyl cis-trans isomerase. Biochim Biophys Acta, 1985. 828(1): p. 39-42.
6. Lang, K., F.X. Schmid, and G. Fischer, Catalysis of protein folding by prolyl isomerase. Nature, 1987. 329(6136): p. 268-70.
7. Fischer, G. and F.X. Schmid, The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry, 1990. 29(9): p. 2205-12.
8. Ünal, C.M. and M. Steinert, Microbial Peptidyl-Prolyl <em>cis</em>/<em>trans</em> Isomerases (PPIases): Virulence Factors and Potential Alternative Drug Targets. Microbiology and Molecular Biology Reviews, 2014. 78(3): p. 544-571.
9. Fischer, G., et al., Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 1989. 337(6206): p. 476-8.
10. Takahashi, N., T. Hayano, and M. Suzuki, Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature, 1989. 337(6206): p. 473-5.
11. Handschumacher, R.E., et al., Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science, 1984. 226(4674): p. 544-7.
12. Harding, M.W., R.E. Handschumacher, and D.W. Speicher, Isolation and amino acid sequence of cyclophilin. J Biol Chem, 1986. 261(18): p. 8547-55.
13. Harding, M.W., et al., A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature, 1989. 341(6244): p. 758-60.
14. Siekierka, J.J., et al., A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature, 1989. 341(6244): p. 755-7.
15. Rahfeld, J.U., et al., A novel peptidyl-prolyl cis/trans isomerase from Escherichia coli. FEBS Lett, 1994. 343(1): p. 65-9.
16. Rahfeld, J.U., et al., Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. FEBS Lett, 1994. 352(2): p. 180-4.
17. Scholz, C., et al., Catalysis of protein folding by parvulin. J Mol Biol, 1997. 273(3): p. 752-62.
18. Hennig, L., et al., Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry, 1998. 37(17): p. 5953-60.
19. Timerman, A.P., et al., Characterization of an exchange reaction between soluble FKBP-12 and the FKBP.ryanodine receptor complex. Modulation by FKBP mutants deficient in peptidyl-prolyl isomerase activity. J Biol Chem, 1995. 270(6): p. 2451-9.
20. Behrens, S., et al., The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. Embo j, 2001. 20(1-2): p. 285-94.
21. Kramer, G., et al., Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J Biol Chem, 2004. 279(14): p. 14165-70.
22. Wang, P. and J. Heitman, The cyclophilins. Genome Biol, 2005. 6(7): p. 226.
23. Galat, A., Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity--targets--functions. Curr Top Med Chem, 2003. 3(12): p. 1315-47.
24. Waldmeier, P.C., et al., Cyclophilin D as a drug target. Curr Med Chem, 2003. 10(16): p. 1485-506.
25. Liu, J., et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 1991. 66(4): p. 807-15.
26. Foor, F., et al., Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast. Nature, 1992. 360(6405): p. 682-4.
27. Rycyzyn, M.A. and C.V. Clevenger, The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc Natl Acad Sci U S A, 2002. 99(10): p. 6790-5.
28. Stamnes, M.A., et al., The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell, 1991. 65(2): p. 219-27.
29. Amanakis, G. and E. Murphy, Cyclophilin D: An Integrator of Mitochondrial Function. Frontiers in physiology, 2020. 11: p. 595-595.
30. Mi, H., et al., A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett, 1996. 398(2-3): p. 201-5.
31. Leverson, J.D. and S.A. Ness, Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism. Mol Cell, 1998. 1(2): p. 203-11.
32. Anderson, S.K., et al., A cyclophilin-related protein involved in the function of natural killer cells. Proc Natl Acad Sci U S A, 1993. 90(2): p. 542-6.
33. Dornan, J., P. Taylor, and M.D. Walkinshaw, Structures of immunophilins and their ligand complexes. Curr Top Med Chem, 2003. 3(12): p. 1392-409.
34. Andreeva, L., R. Heads, and C.J. Green, Cyclophilins and their possible role in the stress response. Int J Exp Pathol, 1999. 80(6): p. 305-15.
35. Hamilton, G.S. and J.P. Steiner, Immunophilins: beyond immunosuppression. J Med Chem, 1998. 41(26): p. 5119-43.
36. Ryffel, B., et al., Distribution of the cyclosporine binding protein cyclophilin in human tissues. Immunology, 1991. 72(3): p. 399-404.
37. Sherry, B., et al., Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci U S A, 1992. 89(8): p. 3511-5.
38. Mikol, V., et al., X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 A resolution. J Mol Biol, 1993. 234(4): p. 1119-30.
39. Peterson, M.R., et al., The three-dimensional structure of a Plasmodium falciparum cyclophilin in complex with the potent anti-malarial cyclosporin A. J Mol Biol, 2000. 298(1): p. 123-33.
40. Liu, J., et al., Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry, 1992. 31(16): p. 3896-901.
41. Breuder, T., et al., Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc Natl Acad Sci U S A, 1994. 91(12): p. 5372-6.
42. O'Keefe, S.J., et al., FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature, 1992. 357(6380): p. 692-4.
43. Mikol, V., J. Kallen, and M.D. Walkinshaw, X-ray structure of a cyclophilin B/cyclosporin complex: comparison with cyclophilin A and delineation of its calcineurin-binding domain. Proc Natl Acad Sci U S A, 1994. 91(11): p. 5183-6.
44. Ke, H., et al., Crystal structure of murine cyclophilin C complexed with immunosuppressive drug cyclosporin A. Proc Natl Acad Sci U S A, 1993. 90(24): p. 11850-4.
45. Taylor, P., et al., Two structures of cyclophilin 40: folding and fidelity in the TPR domains. Structure, 2001. 9(5): p. 431-8.
46. Nigro, P., G. Pompilio, and M.C. Capogrossi, Cyclophilin A: a key player for human disease. Cell Death Dis, 2013. 4(10): p. e888.
47. Lee, J. and S.S. Kim, An overview of cyclophilins in human cancers. J Int Med Res, 2010. 38(5): p. 1561-74.
48. Lee, J. and S.S. Kim, Current implications of cyclophilins in human cancers. Journal of experimental & clinical cancer research : CR, 2010. 29(1): p. 97-97.
49. Obchoei, S., et al., Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer, 2011. 10: p. 102.
50. Obchoei, S., et al., Cyclophilin A: potential functions and therapeutic target for human cancer. Med Sci Monit, 2009. 15(11): p. Ra221-32.
51. Satoh, K., et al., Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation, 2008. 117(24): p. 3088-98.
52. Yoo, S., et al., Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J Mol Biol, 1997. 269(5): p. 780-95.
53. Gamble, T.R., et al., Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell, 1996. 87(7): p. 1285-94.
54. Dietrich, L., et al., Structural consequences of cyclophilin A binding on maturational refolding in human immunodeficiency virus type 1 capsid protein. Journal of virology, 2001. 75(10): p. 4721-4733.
55. Liu, X., Z. Zhao, and W. Liu, Insights into the roles of cyclophilin A during influenza virus infection. Viruses, 2013. 5(1): p. 182-191.
56. Liu, X., et al., Cyclophilin A restricts influenza A virus replication through degradation of the M1 protein. PLoS One, 2012. 7(2): p. e31063.
57. Liu, X., Z. Zhao, and W. Liu, Insights into the roles of cyclophilin A during influenza virus infection. Viruses, 2013. 5(1): p. 182-91.
58. Su, H. and Y. Yang, The roles of CyPA and CD147 in cardiac remodelling. Exp Mol Pathol, 2018. 104(3): p. 222-226.
59. Pfefferle, S., et al., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog, 2011. 7(10): p. e1002331.
60. Beri, D., et al., Demonstration and Characterization of Cyst-Like Structures in the Life Cycle of Trichomonas vaginalis. Front Cell Infect Microbiol, 2019. 9: p. 430.
61. Mielczarek, E. and J. Blaszkowska, Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Infection, 2016. 44(4): p. 447-58.
62. Petrin, D., et al., Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev, 1998. 11(2): p. 300-17.
63. Pereira-Neves, A., K.C. Ribeiro, and M. Benchimol, Pseudocysts in trichomonads--new insights. Protist, 2003. 154(3-4): p. 313-29.
64. Van Der Pol, B., Trichomonas vaginalis Infection: The Most Prevalent Nonviral Sexually Transmitted Infection Receives the Least Public Health Attention. Clinical Infectious Diseases, 2007. 44(1): p. 23-25.
65. McClelland, R.S., et al., Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis, 2007. 195(5): p. 698-702.
66. Ghosh, I., et al., Association between high risk human papillomavirus infection and co-infection with Candida spp. and Trichomonas vaginalis in women with cervical premalignant and malignant lesions. J Clin Virol, 2017. 87: p. 43-48.
67. Gimenes, F., et al., Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol, 2014. 11(12): p. 672-87.
68. Stark, J.R., et al., Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J Natl Cancer Inst, 2009. 101(20): p. 1406-11.
69. Dornan, J., et al., Biochemical and structural characterization of a divergent loop cyclophilin from Caenorhabditis elegans. J Biol Chem, 1999. 274(49): p. 34877-83.
70. Martin, T., et al., Structural basis of interaction between dimeric cyclophilin 1 and Myb1 transcription factor in Trichomonas vaginalis. Sci Rep, 2018. 8(1): p. 5410.
71. Chu, C.H., et al., Membrane localization of a Myb3 transcription factor regulated by a TvCyP1 cyclophilin in the parasitic protozoan Trichomonas vaginalis. FEBS J, 2018. 285(5): p. 929-946.
72. Hsu, H.M., et al., Endomembrane Protein Trafficking Regulated by a TvCyP2 Cyclophilin in the Protozoan Parasite, Trichomonas vaginalis. Sci Rep, 2020. 10(1): p. 1275.
73. Oh, I.H. and E.P. Reddy, The myb gene family in cell growth, differentiation and apoptosis. Oncogene, 1999. 18(19): p. 3017-33.
74. Hsu, H.M., et al., Transcriptional regulation of an iron-inducible gene by differential and alternate promoter entries of multiple Myb proteins in the protozoan parasite Trichomonas vaginalis. Eukaryot Cell, 2009. 8(3): p. 362-72.
75. Lou, Y.C., et al., NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Nucleic Acids Res, 2009. 37(7): p. 2381-94.
76. Wei, S.Y., et al., Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal β-hairpin conformation. Nucleic Acids Res, 2012. 40(1): p. 449-60.
77. Wei, S.Y., et al., Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal beta-hairpin conformation. Nucleic Acids Res, 2012. 40(1): p. 449-60.
78. McPherson, A., Current approaches to macromolecular crystallization. Eur J Biochem, 1990. 189(1): p. 1-23.
79. Otwinowski, Z. and W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997. 276: p. 307-326.
80. McCoy, A.J., et al., Phaser crystallographic software. Journal of Applied Crystallography, 2007. 40(4): p. 658-674.
81. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501.
82. Zwart, P.H., et al., Automated structure solution with the PHENIX suite. Methods Mol Biol, 2008. 426: p. 419-35.
83. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 213-21.
84. Laskowski, R.A., et al., PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 1993. 26(2): p. 283-291.
85. Chen, V.B., et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D, 2010. 66(1): p. 12-21.
86. Martin, T., et al., (1)H, (13)C and (15)N resonance assignments and secondary structures of cyclophilin 2 from Trichomonas vaginalis. Biomol NMR Assign, 2018. 12(1): p. 27-30.
87. Johnson, B.A. and R.A. Blevins, NMR View: A computer program for the visualization and analysis of NMR data. J Biomol NMR, 1994. 4(5): p. 603-14.
88. Aryal, S., et al., N-Terminal Segment of TvCyP2 Cyclophilin from Trichomonas vaginalis Is Involved in Self-Association, Membrane Interaction, and Subcellular Localization. Biomolecules, 2020. 10(9).
89. Davis, T.L., et al., The crystal structure of human WD40 repeat-containing peptidylprolyl isomerase (PPWD1). Febs j, 2008. 275(9): p. 2283-95.
90. Reidt, U., et al., Crystal structure of a complex between human spliceosomal cyclophilin H and a U4/U6 snRNP-60K peptide. J Mol Biol, 2003. 331(1): p. 45-56.
91. Rajiv, C. and T.L. Davis, Structural and Functional Insights into Human Nuclear Cyclophilins. Biomolecules, 2018. 8(4).
92. Mentel, M., et al., Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell, 2008. 7(10): p. 1750-7.
93. Saleh, T., et al., Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nat Chem Biol, 2016. 12(2): p. 117-23.
94. Cardenas, M.E., D. Zhu, and J. Heitman, Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Curr Opin Nephrol Hypertens, 1995. 4(6): p. 472-7.
95. Chu, C.-H., et al., A Highly Organized Structure Mediating Nuclear Localization of a Myb2 Transcription Factor in the Protozoan Parasite <span class="named-content genus-species" id="named-content-1">Trichomonas vaginalis</span>. Eukaryotic Cell, 2011. 10(12): p. 1607-1617.