簡易檢索 / 詳目顯示

研究生: 曾品傑
Tseng, Pin-Chieh
論文名稱: Sp(4, q)的Lusztig序列
Lusztig series of Sp(4, q)
指導教授: 潘戍衍
Pan, Shu-Yen
口試委員: 魏福村
Wei, Fu-Tsun
鄭志豪
Teh, Jyh Haur
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 35
中文關鍵詞: Lusztig序列有限群表現
外文關鍵詞: Lusztig series, group representation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 令 G 是一個定義在 q 個元素的有限體上的線性的代數群,G是其有理點所構成的有限群。s是一個在 G* 裡面的半單元素,T∗是一個在G∗裡面的最大環面,其中 G∗ 是 G 的對偶群。我們定義關連到 s 的 Lusztig 序列 E(G)s 為一個 G 的那些不可約的特徵標,滿足每一個特徵標滿足它和RT∗,s的內積不等於零,RT∗,s是Deligne-Lusztig的虛擬特徵標。根據Lusztig對應,我們有一個從E(G)s到E(CG∗(s))1的雙射,而且包含所有G的不可約的特徵標的集合可以被寫成所有Lusztig序列的不相交聯集。
    在這篇論文中,我們考慮G=Sp4(q),從Srinivasan的工作中,我們知道了所有G的不可約特徵標,我們想要討論如何將這些特徵標寫成Lusztig序列的聯集。


    Let $G$ be the group of rational points of a linear algebraic group $\mathbf{G}$ over a finite field with $q$ elements, $s \in G^{*}$ be a semisimple element, $T^{*}$ be a maximal torus of $G^{*}$ such that $s \in T^{*}$, where $G^{*}$ is the dual group of $G$. Let the Lusztig series ${\cal E}(G)_{s}$ of $s$ be the set of all irreducible character $\chi$ of $G$ such that the inner product of $\chi$ and $R_{T^{*}, s}$ is not zero, where $R_{T^{*}, s}$ is the Deligne-Lusztig virtual character. According to Lusztig correspondence, we know that there is a bijection from ${\cal E}(G)_{s}$ to ${\cal E}(C_{G^{*}}(s))_{1}$ and the set of all irreducible characters of $G$ can be written as the disjoint union of all Luisztig series on $G$. In this paper, we consider $G = {\rm Sp}_{4}(q)$. From Srinivasan's work, we obtain all irreducible characters of $G$. Then we want to discuss how to classify these characters into a union of ${\cal E}(G)_{s}$.

    1 Introduction: 1 1.1 Representations and characters of a nite group . . . . . . . 1 1.2 Deligne-Lusztig virtual characters and unipotent characters . 4 1.3 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Lusztig series of Sp(4, q): 8 2.1 Centralizer of a semisimple element . . . . . . . . . . . . . 8 2.2 Unipotent characters . . . . . . . . . . . . . . . . . . . . . 10 2.3 Irreducible characters of Sp4(q) . . . . . . . . . . . . . . . 15 2.4 Classification of characters of Sp4(q) . . . . . . . . . . . . 27 References 35

    [AB70] C.W. Curtis N. Iwahori T.A. Springer R. Steinberg A. Borel, R. Carter,
    Seminar on algebraic groups and related nite groups, Springer, New
    York, 1970.
    [Cam00] P.J. Cameron, Notes on classical groups, 2000.
    [Car85] R.W. Carter, Finite group of Lie type, conjugacy classes and complex
    characters, John Wiley and Sons Ltd, Chichester, 1985.
    [Cli37] A.H. Clifford, Representations induced in an invariant subgroup, Annals
    of Mathematics, Second Series 38 (1937), no. 3, 533{550.
    [FS90] P. Fong and B. Srinivasan, Brauer trees in classical groups, Journal of
    algebra 131 (1990), no. 1, 179{225.
    [Lus77] G. Lusztig, Irreducible representations of finite classical groups, Inven-
    tiones mathematicae 43 (1977), no. 2.
    [OY09] Yuan-Ting Ou-Yung, The centralizer of a semisimple element of in clas-
    sical groups, Unpublished master's thesis, National Tsing Hua University
    (2009).
    [Sri68] B. Srinivasan, The characters of the finite symplectic group sp(4; q),
    Transactions of the American Mathematical Society 131 (1968), no. 2,
    488{525.
    [Ste12] B. Steinberg, Representation theory of finite groups, an introductory ap-
    proach, Springer, New York, 2012.

    QR CODE