簡易檢索 / 詳目顯示

研究生: 廖思羽
Liao, Ssu-Yu
論文名稱: 雙偶極性主體材料於藍色螢光及TADF型激發複合體元件之探討
Applications of Bipolar Host Materials in Blue Fluorescent and TADF-Type Exciplex Devices
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 陳秋炳
Chen, Cheu-Pyeng
周鶴修
Chou, Ho-Hsiu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 268
中文關鍵詞: 雙偶極性主體材料藍色螢光元件激發複合體熱誘發延遲螢光元件出光率
外文關鍵詞: bipolar, host material, blue fluorescent OLEDs, exciplex, TADF, dipole orientation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們主要探討雙偶極性主體材料於有機發光二極體之應用。首先,在第二章中我們設計並合成了五個含蒽之菲並咪唑主體材料,藉由引入五種不同推電子能力的官能基,使材料具有雙偶極性的效果,有利於元件中載子傳遞的平衡。而我們在菲並咪唑、蒽基以及推電子官能基之間引入兩個苯環結構,則可斷開共軛,確保主體材料高能隙的特性(Eg >3.0 eV)。此一系列主體材料的熱裂解溫度皆高於450 ℃,玻璃轉化溫度也都高於140 ℃,具有十分優良的熱穩定性。將客體材料BCzVBi摻雜入此系列主體材料後,以PIAAn為主體材料的元件具有最佳的效率表現,其最大外部量子效率、發光效率與發光功率分別為10.1%、12.9 cd/A與10.9 lm/W,CIEx,y色度座標位於(0.15, 0.14),屬於深藍光的放光。而元件的高效率除了來自PIAAn優良的載子平衡能力外,此系列主體材料也使客體材料(BCzVBi)的偶極矩於發光層中趨向水平排列(Θ = 0.89~0.92),大幅提升元件的出光率。此外,我們將表現最佳的主體材料PIAAn應用於橘色以及白色螢光元件中,皆具有不錯的元件表現,其中以Rubrene為客體材料的橘色螢光元件最大外部量子效率、發光效率與發光功率分別為6.9%、25.7 cd/A與26.8 lm/W,CIEx,y色度座標位於(0.48, 0.52)。而綜合PIAAn、BCzVBi與Rubrene所製成的單一發光層的白色螢光元件,其最大外部量子效率、發光效率與發光功率則分別為7.5%、9.3 cd/A與8.3 lm/W,CIEx,y色度座標位於(0.27, 0.34),此系列白光元件具有十分穩定的光色表現且元件效率的滾降(Roll-off)現象十分輕微。
    在第三章中,我們則探討TADF型激發複合體(Exciplex)的作用機制,其中我們以具有雙偶極性的紫光材料BT-03作為電子予體(主體材料),搭配TADF型水藍光材料2CzPN為電子受體(客體材料),製作出一系列具TADF特性的高效率綠光激發複合體元件,其最大外部量子效率、發光效率與發光功率則分別為18.0%、57.8 cd/A與51.6 lm/W,CIEx,y色度座標位於(0.32, 0.51)。此外,我們也將BT-03搭配4CzIPN與CzDBA兩TADF型綠光材料作為電子受體(客體材料),製作出兩組具TADF特性的橘光激發複合體元件,其中以CzDBA為客體材料之元件具有十分出色的效率表現,其最大外部量子效率、發光效率與發光功率則分別為19.2%、54.7 cd/A與48.9 lm/W,CIEx,y色度座標位於(0.50, 0.48)。最後,我們也藉由上述三組激發複合體之螢光量子效率與延遲螢光生命期之量測,進一步解釋並預測電子予體與電子受體之化學結構對激發複合體元件效率表現的影響。


    In this thesis, we mainly focus on the applications of bipolar host materials in organic light-emitting diodes. In Chapter 2, five bipolar host materials based on electron-deficient phenanthroimidazole and anthracene derivatives, PIAAn, PIACzph, PIACz, PIAPhCz and PIADPA have been designed and synthesized, in which the incorporation of five different donor units facilitates the charge balance in the devices. On the other hand, the phenyl units are introduced to reduce the degree of π-conjugation between donor and acceptor units, resulting in a high singlet energy for these host materials. These compounds exhibit excellent thermal stability with decomposition temperature above 450 ℃ and glass transition temperature above 140 ℃. Moreover, the device using PIAAn doped with 5 wt% BCzVBi as emitting layer shows a maximum external quantum efficiency (E.Q.E.) of 10.1%, the current efficiency (C.E.) of 12.9 cd/A, and the power efficiency (P.E.) of 10.9 lm/W with the CIE coordinates of (0.15, 0.14). The outstanding performances of the device can be attributed to highly preferred horizontal transition dipole ratio (Θ) of 0.89~0.92 as well as its perfect charge balance ability. Furthermore, we apply the host material, PIAAn, into the orange and white fluorescent OLEDs and the orange device using Rubrene as guest material displays a maximum E.Q.E. of 6.9%, the C.E. of 25.7 cd/A, and the P.E. of 26.8 lm/W with the CIE coordinates of (0.48, 0.52). The white device with the single emitting layer composed of PIAAn, BCzVBi, and Rubrene gives a maximum E.Q.E. of 7.5%, the C.E. of 9.3 cd/A, and the P.E. of 8.3 lm/W with the CIE coordinates of (0.27, 0.34), featuring stable EL performances and low efficiency roll-off as well.
    In Chapter 3, we attempt to discuss the mechanism of the TADF-type exciplex system. First of all, we fabricate a series of devices utilizing bipolar host material, BT-03, as electron donor, doped with TADF-type guest material, 2CzPN, as electron acceptor. The resulting green fluorescent device which demonstrates a TADF characteristic exhibits a high E.Q.E. of 18.0%, the C.E. of 57.8 cd/A, and the P.E. of 51.6 lm/W with the CIE coordinates of (0.32, 0.51). On the other hand, we fix BT-03 as electron donor and choose another two TADF-type materials, 4CzIPN and CzDBA, as electron acceptor, and successfully fabricate two series of orange fluorescent devices with TADF characteristics. The one using CzDBA as electron acceptor achieves a high E.Q.E. of 19.2%, the C.E. of 54.7 cd/A, and the P.E. of 48.9 lm/W with the CIE coordinates of (0.50, 0.48). Finally, we further explain and predict the relationships between the structure of electron donor and electron acceptor in the emitting layer and the device performances of exciplex system via the measurement of quantum efficiency and delay fluorescence lifetime of the three exciplex systems discussed above.

    目錄 v 簡稱對照表 viii 圖目錄 ix 表目錄 xxi 第一章 緒論 2 第一節 有機發光二極體之發展歷程 2 第二節 OLED元件結構與發光原理 8 第三節 有機材料之放光與能量轉移機制 10 第四節 OLED元件之發光效率 13 第五節 OLED元件之出光率 19 第二章 雙偶極性含蒽之菲並咪唑主體材料之設計合成及其於藍橘白螢光有機電致元件之應用 26 前言與研究動機 26 第一節 雙偶極性含蒽之菲並咪唑主體材料的合成與鑑定 36 第二節 雙偶極性含蒽之菲並咪唑主體材料物理性質之探討 42 2-1. X-ray晶體繞射結構 42 2-2. 光物理性質探討 45 2-3. 熱物理性質探討(TGA、DSC) 56 2-4. 最高填滿軌域(HOMO)-最低未填滿軌域(LUMO)之測量 61 第三節 雙偶極性含蒽之菲並咪唑主體材料於藍橘白螢光元件之應用 65 3-1. 藍色螢光元件結構之最佳化 65 3-2. 藍色螢光元件之效率分析 83 3-3. 橘色與白色螢光元件結構之最佳化 95 結論 115 實驗部分 117 參考文獻 135 第三章 雙偶極性主體材料之合成及其應用於TADF型激發複合體元件 140 前言與研究動機 140 第一節 雙偶極性主體材料之合成與鑑定 148 第二節 雙偶極性主體材料物理性質之探討 150 2-1. 光物理性質探討 150 2-2. 熱物理性質探討(TGA、DSC) 156 2-3. 最高填滿軌域(HOMO)-最低未填滿軌域(LUMO)之測量 157 第三節 雙偶極性主體材料之激發複合體於綠橘雙色螢光元件之應用 159 3-1. 綠色螢光元件結構之最佳化 159 3-2. 橘色螢光元件結構之最佳化 174 3-3. 激發複合體於綠橘雙色螢光元件作用機制之探討 190 結論 205 實驗部分 206 參考文獻 211 附錄一 測量原理、藥品、儀器與元件製作 213 附錄二 第二章核磁共振光譜資料 223 附錄三 第三章核磁共振光譜資料 253 附錄四 X-ray單晶繞射結構分析 263

    第一章
    (1) Kim, S. T. In the 6th International Meeting on Information Display and the International Display Manufacturing Conference (IMID/IDMC 2006) Daegu, Korea, 2006.
    (2) Destriau, G. J. Chem. Phys. 1936, 33, 587.
    (3) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
    (4) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    (5) Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
    (6) Forster, T. Disc. Faraday Soc. 1959, 27, 7.
    (7) Dexter, D. L. J. Chem. Phys. 1953, 21, 836.
    (8) Adachi, C. N., H. Matrerial Matters 2009, 4.3, 74.
    (9) 何孟寰,黃孝文,陳金鑫 有機電激磷光材料與OLED磷光元件之發展近況, 2005; Vol. 63.
    (10) Liu, S. W.; Wang, J. X.; Divayana, Y.; Dev, K.; Tan, S. T.; Demir, H. V.; Sun, X. W. Appl. Phys. Lett. 2013, 102, 053305.
    (11) Azenha, E. l. G.; Serra, A. C.; Pineiro, M.; Pereira, M. M.; Seixas de Melo, J.; Arnaut, L. G.; Formosinho, S. J.; Rocha Gonsalves, A. M. d. A. Chem. Phys. 2002, 280, 177.
    (12) Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B 1999, 60, 14422.
    (13) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
    (14) Méhes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C. Angew .Chem. Int. Ed. 2012, 51, 11311.
    (15) Lee, J.; Shizu, K.; Tanaka, H.; Nomura, H.; Yasuda, T.; Adachi, C. J. Mater. Chem. C 2013, 1, 4599.
    (16) Tsang, D. P.-K.; Matsushima, T.; Adachi, C. Sci. Rep. 2016, 6, 22463.
    (17) Chou, P. Y.; Chou, H. H.; Chen, Y. H.; Su, T. H.; Liao, C. Y.; Lin, H. W.; Lin, W. C.; Yen, H. Y.; Chen, I. C.; Cheng, C. H. Chem. Commun. 2014, 50, 6869.
    (18) Di, D.; Yang, L.; Richter, J. M.; Meraldi, L.; Altamimi, R. M.; Alyamani, A. Y.; Credgington, D.; Musselman, K. P.; MacManus-Driscoll, J. L.; Friend, R. H. Adv. Mater. 2017, 29, 1605987.
    (19) In COMSOL Conference Boston, 2015.
    (20) 陳金鑫,黃孝文 OLED夢幻顯示器.OLED材料與元件, 2009.
    (21) Bulović, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Garbuzov, D. Z.; Forrest, S. R. Phys. Rev. B 1998, 58, 3730.
    (22) Lin, H.-W.; Lin, C.-L.; Chang, H.-H.; Lin, Y.-T.; Wu, C.-C.; Chen, Y.-M.; Chen, R.-T.; Chien, Y.-Y.; Wong, K.-T. J. Appl. Phys. 2004, 95, 881.
    (23) Yokoyama, D.; Sakaguchi, A.; Suzuki, M.; Adachi, C. Appl. Phys. Lett. 2008, 93, 173302.
    (24) Yokoyama, D.; Sakaguchi, A.; Suzuki, M.; Adachi, C. Appl. Phys. Lett. 2009, 95, 243303.
    (25) Yokoyama, D. J. Mater. Chem. 2011, 21, 19187.
    (26) Frischeisen, J.; Yokoyama, D.; Endo, A.; Adachi, C.; Brütting, W. Org. Electron. 2011, 12, 809.
    (27) Yokoyama, D.; Sasabe, H.; Furukawa, Y.; Adachi, C.; Kido, J. Adv. Funct. Mater. 2011, 21, 1375.
    (28) Kim, K.-H.; Lee, S.; Moon, C.-K.; Kim, S.-Y.; Park, Y.-S.; Lee, J.-H.; Woo Lee, J.; Huh, J.; You, Y.; Kim, J.-J. Nat. Commun. 2014, 5, 4769.
    第二章
    (1) Kim, K.-H.; Lee, S.; Moon, C.-K.; Kim, S.-Y.; Park, Y.-S.; Lee, J.-H.; Woo Lee, J.; Huh, J.; You, Y.; Kim, J.-J. Nat. Commun. 2014, 5, 4769.
    (2) Lee, M.-T.; Chen, H.-H.; Liao, C.-H.; Tsai, C.-H.; Chen, C. H. Appl. Phys. Lett. 2004, 85, 3301.
    (3) Lee, M. T.; Liao, C. H.; Tsai, C. H.; Chen, C. H. Adv. Mater. 2005, 17, 2493.
    (4) Kim, M.-S.; Choi, B.-K.; Lee, T.-W.; Shin, D.; Kang, S. K.; Kim, J. M.; Tamura, S.; Noh, T. Appl. Phys. Lett. 2007, 91, 251111.
    (5) Lyu, Y.-Y.; Kwak, J.; Kwon, O.; Lee, S.-H.; Kim, D.; Lee, C.; Char, K. Adv. Mater. 2008, 20, 2720.
    (6) Kuo, C.-J.; Li, T.-Y.; Lien, C.-C.; Liu, C.-H.; Wu, F.-I.; Huang, M.-J. J. Mater. Chem. 2009, 19, 1865.
    (7) Liu, D.; Du, M.; Chen, D.; Ye, K.; Zhang, Z.; Liu, Y.; Wang, Y. J. Mater. Chem. C 2015, 3, 4394.
    (8) 周鶴修 博士論文, 2010.
    (9) 許郃珮 碩士論文, 2011.
    (10) Islangulov, R. R.; Castellano, F. N. Angew .Chem. Int. Ed. 2006, 45, 5957.
    (11) Gray, V.; Dzebo, D.; Lundin, A.; Alborzpour, J.; Abrahamsson, M.; Albinsson, B.; Moth-Poulsen, K. J. Mater. Chem. C 2015, 3, 11111.
    (12) Di, D.; Yang, L.; Richter, J. M.; Meraldi, L.; Altamimi, R. M.; Alyamani, A. Y.; Credgington, D.; Musselman, K. P.; MacManus-Driscoll, J. L.; Friend, R. H. Adv. Mater. 2017, 29, 1605987.
    (13) Jones, R. N. Chem. Rev. 1947, 41, 353.
    (14) You, D. K.; Lee, S. H.; Lee, J. H.; Kwak, S. W.; Hwang, H.; Lee, J.; Chung, Y.; Park, M. H.; Lee, K. M. RSC Adv. 2017, 7, 10345.
    (15) Wong, K.-T.; Ku, S.-Y.; Cheng, Y.-M.; Lin, X.-Y.; Hung, Y.-Y.; Pu, S.-C.; Chou, P.-T.; Lee, G.-H.; Peng, S.-M. J. Org. Chem. 2006, 71, 456.
    (16) Chou, P.-T.; Yu, W.-S.; Cheng, Y.-M.; Pu, S.-C.; Yu, Y.-C.; Lin, Y.-C.; Huang; Chen, C.-T. J. Phys. Chem. A 2004, 108, 6487.
    (17) Naito, K. Chem. Mater. 1994, 6, 2343.
    (18) Salbeck, J.; Yu, N.; Bauer, J.; Weissörtel, F.; Bestgen, H. Synth. Met. 1997, 91, 209.
    (19) J. Shi, C. W. T., C. H. Chen U.S. Patent 5646948, 1997.
    (20) Tian, G.; Huang, W.; Cai, S.; Zhou, H.; Li, B.; Wang, Q.; Su, J. RSC Adv. 2014, 4, 38939.
    (21) Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl. Phys. Lett. 1995, 67, 3853.
    (22) Malliaras, G. G.; Scott, J. C. J. Appl. Phys. 1998, 83, 5399.
    (23) 梁從主,陳琬鎔,曾偉菁 In 科學發展月刊 2013; Vol. 491, p 58.
    (24) Chen, Y.-H.; Lin, C.-C.; Huang, M.-J.; Hung, K.; Wu, Y.-C.; Lin, W.-C.; Chen-Cheng, R.-W.; Lin, H.-W.; Cheng, C.-H. Chem. Sci. 2016, 7, 4044.
    (25) Williams, D. F. J. Chem. Phys. 1967, 47, 344.
    (26) Seo, J. H.; Park, J. S.; Seo, B. M.; Han, W. K.; Lee, K. H.; Park, J. K.; Yoon, S. S.; Kim, Y. K. Mol. Cryst. Liq. Cryst. 2011, 538, 84.
    (27) Chen, Y.-H.; Chou, H.-H.; Su, T.-H.; Chou, P.-Y.; Wu, F.-I.; Cheng, C.-H. Chem. Commun. 2011, 47, 8865.
    (28) Seo, J. H.; Lee, S. J.; Hyung, G. W.; Lee, K. H.; Park, J. K.; Yoon, S. S.; Kim, Y. K. J. Nanosci. Nanotechnol. 2011, 11, 5812.
    (29) Park, H.; Lee, J.; Kang, I.; Chu, H. Y.; Lee, J.-I.; Kwon, S.-K.; Kim, Y.-H. J. Mater. Chem. 2012, 22, 2695.
    (30) Li, Z.; Jiao, B.; Wu, Z.; Liu, P.; Ma, L.; Lei, X.; Wang, D.; Zhou, G.; Hu, H.; Hou, X. J. Mater. Chem. C 2013, 1, 2183.
    (31) Meng, M.; Song, W.; Kim, Y.-H.; Lee, S.-Y.; Jhun, C.-G.; Zhu, F. R.; Ryu, D. H.; Kim, W.-Y. J. Nanosci. Nanotechnol. 2013, 13, 294.
    (32) Li, C.; Zhang, M.; Chen, X.; Li, Q. Opt. Mater. Express 2016, 6, 2545.
    (33) 孫于雯 碩士論文, 2016.
    (34) Liduo, W.; Lian, D.; Gangtie, L.; Yong, Q. Jpn. J. Appl. Phys. 2004, 43, L560.
    (35) Wu, Y.-S.; Liu, T.-H.; Chen, H.-H.; Chen, C. H. Thin Solid Films 2006, 496, 626.
    (36) Singh-Rachford, T. N.; Castellano, F. N. J. Phys. Chem. A 2008, 112, 3550.
    (37) Chen, S.; Wu, Q.; Kong, M.; Zhao, X.; Yu, Z.; Jia, P.; Huang, W. J. Mater. Chem. C 2013, 1, 3508.
    第三章
    (1) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
    (2) Wong, M. Y.; La-Placa, M.-G.; Pertegas, A.; Bolink, H. J.; Zysman-Colman, E. J. Mater. Chem. C 2017, 5, 1699.
    (3) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
    (4) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915.
    (5) Im, J. B.; Lampande, R.; Kim, G. H.; Lee, J. Y.; Kwon, J. H. J. Phys. Chem. C 2017, 121, 1305.
    (6) Chen, D.; Wang, Z.; Wang, D.; Wu, Y.-C.; Lo, C.-C.; Lien, A.; Cao, Y.; Su, S.-J. Org. Electron. 2015, 25, 79.
    (7) Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photonics 2012, 6, 253.
    (8) Goushi, K.; Adachi, C. Appl. Phys. Lett. 2012, 101, 023306.
    (9) Li, J.; Nomura, H.; Miyazaki, H.; Adachi, C. Chem. Commun. 2014, 50, 6174.
    (10) Liu, X.-K.; Chen, Z.; Zheng, C.-J.; Liu, C.-L.; Lee, C.-S.; Li, F.; Ou, X.-M.; Zhang, X.-H. Adv. Mater. 2015, 27, 2378.
    (11) Liu, W.; Chen, J.-X.; Zheng, C.-J.; Wang, K.; Chen, D.-Y.; Li, F.; Dong, Y.-P.; Lee, C.-S.; Ou, X.-M.; Zhang, X.-H. Adv. Funct. Mater. 2016, 26, 2002.
    (12) Hung, W.-Y.; Wang, T.-C.; Chiang, P.-Y.; Peng, B.-J.; Wong, K.-T. ACS Appl. Mater. Interfaces 2017, 9, 7355.
    (13) Lee, D. R.; Hwang, S.-H.; Jeon, S. K.; Lee, C. W.; Lee, J. Y. Chem. Commun. 2015, 51, 8105.
    (14) Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.
    (15) Lin, C.-C.; Huang, M.-J.; Chiu, M.-J.; Huang, M.-P.; Chang, C.-C.; Liao, C.-Y.; Chiang, K.-M.; Shiau, Y.-J.; Chou, T.-Y.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H. Chem. Mater. 2017, 29, 1527.
    (16) Tian, G.; Huang, W.; Cai, S.; Zhou, H.; Li, B.; Wang, Q.; Su, J. RSC Adv. 2014, 4, 38939.
    (17) Wang, S.; Wang, X.; Yao, B.; Zhang, B.; Ding, J.; Xie, Z.; Wang, L. Sci. Rep. 2015, 5, 12487.
    (18) Masui, K.; Nakanotani, H.; Adachi, C. Org. Electron. 2013, 14, 2721.
    (19) Chen, D.; Xie, G.; Cai, X.; Liu, M.; Cao, Y.; Su, S.-J. Adv. Mater. 2016, 28, 239.
    (20) Hung, W.-Y.; Fang, G.-C.; Lin, S.-W.; Cheng, S.-H.; Wong, K.-T.; Kuo, T.-Y.; Chou, P.-T. Sci. Rep. 2014, 4, 5161.
    (21) Hung, W.-Y.; Fang, G.-C.; Chang, Y.-C.; Kuo, T.-Y.; Chou, P.-T.; Lin, S.-W.; Wong, K.-T. ACS Appl. Mater. Interfaces 2013, 5, 6826.
    (22) Sang Kyu, J.; Kyoung Soo, Y.; Jun Yeob, L. Nanotechnology 2016, 27, 224001.

    QR CODE