簡易檢索 / 詳目顯示

研究生: 劉冠廷
Liu, Kuan-Ting
論文名稱: 以離子束濺鍍法鍍製氮化矽薄膜其光學特性之探討
Study of the optical properties of the silicon nitride thin films deposited by the ion beam sputter method
指導教授: 趙煦
Chao, Shiuh
口試委員: 陳至信
Chen, Jyh-Shin
蔡東昇
Tsai, Dung-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 62
中文關鍵詞: 離子束濺鍍法氮化矽薄膜光學吸收氫汙染金屬汙染物機械損耗
外文關鍵詞: metal contaminant
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射干涉重力波觀測站(Laser Interferometer Gravitational wave Observatory, LIGO)架設大型麥克森干涉儀用於探測重力波。由於重力波訊號極其微弱,故降低量測雜訊與提升量測靈敏度相當重要。為了提升量測的靈敏度,不僅需要降低高反射鏡的熱擾動雜訊(Coating Brownian noise),也需具備良好的光學性質,因此本實驗重點在於降低薄膜的機械損耗與光學吸收。
    由於先前研究發現PECVD所鍍製之氮化矽薄膜含有氫的存在,其原因為製程氣體含有氫,故鍍製出的氮化矽薄膜含有Si-H鍵及N-H鍵。Si-H鍵會在室溫下貢獻機械損耗,N-H鍵則會在低溫下產生損耗峰值和貢獻在波段1550nm的光學吸收。因此筆者採用製程氣體與靶材皆不含氫的IBS(Ion Beam Sputter)鍍製氮化矽薄膜,預期鍍製出不含氫的氮化矽薄膜。IBS製程方法為氮離子束轟擊矽靶鍍製氮化矽薄膜,其中腔體不通入製程氣體進行反應。筆者透過調變Beam voltage來調製薄膜光學與材料特性,並量測不同製程參數下所鍍製之薄膜的氫鍵結濃度、Silicon dangling bond、光學吸收、XPS以及金屬汙染物含量,並將其統整進行深入探討。
    本實驗結果顯示,影響光學吸收之矽懸鍵與金屬汙染物皆與製程參數Beam voltage存在一定關係。隨著Beam voltage降低,薄膜內的Silicon dangling bond濃度下降,然而金屬汙染物含量卻是隨著Beam voltage降低而增加。由於上述兩項因子皆會影響薄膜光學吸收,導致Beam voltage與薄膜消光係數不存在一定趨勢。研究更發現,隨著通入離子源之冷卻水溫降低,薄膜內金屬汙染物含量隨之下降。但水溫降到一定程度時,薄膜內金屬汙染物含量降幅驟緩。另外由FTIR與XPS之數據結果顯示,薄膜成份裡含有氫與氧,推測二者來源是來自基板附近之不鏽鋼壁上吸附的水氣所貢獻。


    The Laser Interferometer Gravitational-Wave Observatory (LIGO) established a large-scale Michelson interferometer to detect gravitational waves. Since the gravitational wave signal is extremely weak, it is crucially important to reduce the measurement noise and increase the measurement sensitivity. In order to enhance the measurement sensitivity, we reduce the coating thermal noise and improve optical properties on the high reflective mirror. Therefore, the primary point of experiment is to reduce the mechanical loss and optical absorption of the film.
    From the previous research, we had found that the silicon nitride film which was deposited by PECVD contained Si-H bonds and N-H bonds because the process gas contained hydrogen. The Si-H bonds contributed the mechanical loss at room temperature, then the N-H bonds generated loss at low temperature and contributed the optical absorption at the 1550 nm. Therefore, we used IBS (Ion Beam Sputter) to deposit the silicon nitride film because the process gas and the target did not contain hydrogen. Besides, we adjusted the optical and material properties of the film by modulating the beam voltage. Furthermore, we measured the Si-H bonds, N-H bonds, silicon dangling bond, optical absorption, atomic proportion, and the metal contaminants in the film.
    The results from measurement showed that the silicon dangling bonds and metal contaminants affect the optical absorption, and they have certain relationship with beam voltage. As the beam voltage reduced, the concentration of silicon dangling bond decreased. However, content of metal contaminants content increased. Then, because silicon dangling bonds and metal contaminants had an influence on the optical absorption, there was obvious trend in beam voltage and extinction coefficient of film. According to the reference and results of measurement, when the temperature of cooling water which supplied to the ion source decreased, the content of metal contaminants decreased. In addition, we found that there were hydrogen and oxygen in the film from the results of FTIR and XPS. Then we speculated that the source of hydrogen and oxygen was water vapor which adsorbed on the stainless-steel wall near the substrate.

    Abstract I 摘要 II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、 導論 1 1-1 前言 1 1-2 研究動機 3 第二章、 鍍製氮化矽薄膜製程與問題討論 5 2-1 離子束濺鍍系統介紹與原理 5 2-2 離子源清潔與環境清潔 7 2-3 文獻探討與本實驗室利用 IBS 鍍製氮化矽薄膜之數據 7 2-4 氣體管路配置 11 2-5 腔體之通氣順序與壓力紀錄 12 2-6 熱機過程 13 2-6.1 熱機流程 13 2-6.2 問題與解決方法 14 2-6.2.1 Grid 短路 14 2-6.2.2 離子源外圓盤與試片載台有arching 15 2-6.2.3 離子束閃爍不穩 16 2-7 鍍膜測試之問題與解決方法 16 2-7.1 離子源冷卻水溫過高 16 2-7.2 氮化矽薄膜剝落 17 2-7.3 氮化矽薄膜再現性與熱機時間 21 2-7.4 氮氬離子束鍍製氮化矽薄膜之再現性問題 22 2-7.5 矽靶材之純度 24 第三章、 使用6N 矽靶材鍍製氮化矽薄膜 26 3-1 鍍製氮化矽薄膜測試與參數調整 26 3-2 鍍製氮化矽薄膜之特性分析 27 3-2.1 薄膜折射率與鍍率 27 3-2.2 鍵結分析 28 3-2.3 矽懸鍵分析 32 3-2.4 光學吸收 35 3-2.5 金屬汙染物分析 37 3-2.6 各元素含量與縱深分布 41 3-3 降低冷卻離子源冷水溫度鍍製氮化矽薄膜之特性分析 46 3-3.1 鍵結與矽懸鍵分析 46 3-3.2 金屬汙染物分析 48 3-3.3 光學吸收 50 第四章、 總結與未來規劃 52 4-1 總結 52 4-2 未來規劃 54 附錄A: SiO2 退火文獻 55 參考文獻 57

    [1] EINSTEIN, Albert. Besprechung von" A. Einstein: Die Grundlage der allgemeinen Relativitätstheorie". NW, 1916, 4: 481.
    [2] ABBOTT, Benjamin P., et al. Observation of gravitational waves from a binary black hole merger. Physical review letters, 2016, 116.6: 061102.
    [3] COLLABORATION, LIGO SCIENTIFIC. Instrument Science White Paper 2018. 2018.
    [4] CALLEN, Herbert B.; WELTON, Theodore A. Irreversibility and generalized noise. Physical Review, 1951, 83.1: 34.
    [5] GREENE, Richard F.; CALLEN, Herbert B. On the formalism of thermodynamic fluctuation theory. Physical Review, 1951, 83.6: 1231.
    [6] CALLEN, Herbert B.; GREENE, Richard F. On a theorem of irreversible thermodynamics. Physical Review, 1952, 86.5: 702.
    [7] Huang-Wei Pan, Study of silicon nitride and silica films fabricated by a plasma enhanced chemical vapor deposition method for low thermal noise mirror coating of laser interferometer gravitational wave detectors, Doctor thesis, National Tsing Hua University (2018)
    [8] Zhen-Li Huang, Study of the optical and mechanical loss properties of the silicon nitride thin films fabricated by the PECVD method and subjected to thermal annealing and NH3-free process, Master thesis, National Tsing Hua University (2019)
    [9] Jeng-Huang Wen, Prepare of the ion beam sputter coater for coating the low loss thin films in LIGO mirror application, Master thesis, National Tsing Hua University (2010)
    [10] Po-Hau Huang, Anneal effect on optical properties of nano-layer coating deposited by ion beam sputtering and material properties of silicon nitride coatings deposited by ion beam sputtering, Master thesis, National Tsing Hua University (2019)
    [11] HUANG, Lin, et al. Structure and composition studies for silicon nitride thin films deposited by single ion bean sputter deposition. Thin Solid Films, 1997, 299.1-2: 104-109.
    [12] TAN, S.; SCHLESINGER, T. E.; MIGLIUOLO, M. The role of Si3N4 layers in determining the texture of sputter deposited LiNbO3 thin films. Applied physics letters, 1996, 68.19: 2651-2653.
    [13] SIGNORE, M. A., et al. Deposition of silicon nitride thin films by RF magnetron sputtering: a material and growth process study. Optical materials, 2012, 34.4: 632-638.
    [14] VILA, M.; CACERES, D.; PRIETO, C. Mechanical properties of sputtered silicon nitride thin films. Journal of Applied Physics, 2003, 94.12: 7868-7873.
    [15] BURDOVITSIN, V. A. Silicon nitride and oxynitride films prepared by ion beam reactive sputtering. Thin solid films, 1983, 105.3: 197-202.
    [16] MARKWITZ, A., et al. Nitrogen profiles of thin sputtered PVD silicon nitride films. Vacuum, 1993, 44.3-4: 367-370.
    [17] XU, Gang, et al. Optical investigation of silicon nitride thin films deposited by rf magnetron sputtering. Thin Solid Films, 2003, 425.1-2: 196-202.
    [18] RAY, S. K., et al. Effect of reactive‐ion bombardment on the properties of silicon nitride and oxynitride films deposited by ion‐beam sputtering. Journal of applied physics, 1994, 75.12: 8145-8152.
    [19] KISCHKAT, Jan, et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Applied optics, 2012, 51.28: 6789-6798.
    [20] BOUCHIER, D., et al. Low Temperature Deposition of Silicon Nitride by Reactive Ion‐Beam Sputtering. Journal of the Electrochemical Society, 1983, 130.3: 638.
    [21] IDA, Michel; CHATON, Patrick; RAFIN, B. Control of silicon oxynitrides refractive index by reactive-assisted ion beam sputter deposition. In: Optical Interference Coatings. International Society for Optics and Photonics, 1994. p. 404-413.
    [22] WOLFE, Jesse D., et al. Deposition of durable wideband silver mirror coatings using long-throw low-pressure DC-pulsed magnetron sputtering. In: Specialized Optical Developments in Astronomy. International Society for Optics and Photonics, 2003. p. 343-351.
    [23] RAMM, Juergen; HORA, Ralf; BOVARD, Bertrand G. Reactive low-voltage ion plating of hard silicon nitride optical thin films and their characterization. In: Hard Materials in Optics. International Society for Optics and Photonics, 1990. p. 92-100.
    [24] CAUGHEY, D. M.; THOMAS, R. E. Carrier mobilities in silicon empirically related to doping and field. Proceedings of the IEEE, 1967, 55.12: 2192-2193.
    [25] Lin-An Chang, Annealing effect on the optical and mechanical properties of nitrogen-rich silicon nitride film fabricated by plasma enhance chemical vapor deposition, Master thesis, National Tsing Hua University (2018)
    [26] Nai-Chung Kang, Photothermal common-path interferometry system setup and study of optical absorption of silicon nitride films deposited by PECVD method, Master thesis, National Tsing Hua University (2017)
    [27] VITKAVAGE, D. J.; MAYER, T. M. Target contamination by cathode sputtering in broad beam ion sources. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1988, 6.1: 154-155.
    [28] REYNOLDS, Thaine W.; RICHLEY, Edward A. Contamination of Spacecraft Surfaces Downstream of a Kaufman Thruster. 1971.
    [29] AL-KUHAILI, M. F.; DURRANI, S. M. A. Optical properties of chromium oxide thin films deposited by electron-beam evaporation. Optical Materials, 2007, 29.6: 709-713.
    [30] AKL, Alaa A. Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis. Applied Surface Science, 2004, 233.1-4: 307-319.
    [31] CHIANG, Donyau, et al. Determination of the Refractive Index of Molybdenum Using a Spectrophotometric Method. Sensors and Materials, 2019, 31.11: 3517-3526.
    [32] SIAN, Tarsame S.; REDDY, G. B. Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Solar energy materials and solar cells, 2004, 82.3: 375-386.
    [33] NAGAI, Junichi. Characterization of evaporated nickel oxide and its application to electrochromic glazing. Solar energy materials and solar cells, 1993, 31.2: 291-299.
    [34] SHAABAN, E. R.; KAID, M. A.; ALI, M. G. S. X-ray analysis and optical properties of nickel oxide thin films. Journal of alloys and compounds, 2014, 613: 324-329.
    [35] MANJUNATHA, Krishna Nama; PAUL, Shashi. Investigation of optical properties of nickel oxide thin films deposited on different substrates. Applied Surface Science, 2015, 352: 10-15.
    [36] KUMAGAI, H., et al. Preparation and characteristics of nickel oxide thin film by controlled growth with sequential surface chemical reactions. Journal of Materials Science Letters, 1996, 15.12: 1081-1083.
    [37] TAKEDA, Hiromitsu; ADACHI, Kenji. Near infrared absorption of tungsten oxide nanoparticle dispersions. Journal of the American Ceramic Society, 2007, 90.12: 4059-4061.
    [38] HUTCHINS, M. G., et al. Preparation and properties of electrochemically deposited tungsten oxide films. physica status solidi (a), 1999, 176.2: 991-1002.
    [39] YAMADA, Itsunari, et al. Near-infrared polarizer with tungsten silicide wire grids. Japanese Journal of Applied Physics, 2011, 50.1R: 012502.
    [40] NELSON, R. Sc. An investigation of thermal spikes by studying the high energy sputtering of metals at elevated temperatures. Philosophical Magazine, 1965, 11.110: 291-302.
    [41] Jun-Ting Chen, Study on the optical properties of silicon oxynitride films deposited by ion beam sputter, Master thesis, National Tsing Hua University (2020)
    [42] BIRNEY, Ross, et al. Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy. Physical review letters, 2018, 121.19: 191101.
    [43] SCHNEIDER, Jochen M., et al. On the effect of hydrogen incorporation in strontium titanate layers grown by high vacuum magnetron sputtering. Applied physics letters, 1999, 75.22: 3476-3478.
    [44] CLEVENGER, L. A., et al. Comparison of high vacuum and ultra‐high‐vacuum tantalum diffusion barrier performance against copper penetration. Journal of applied physics, 1993, 73.1: 300-308.
    [45] CALDER, R.; LEWIN, G. Reduction of stainless-steel outgassing in ultra-high vacuum. British Journal of Applied Physics, 1967, 18.10: 1459.
    [46] TILSCH, Markus; SCHEUER, Volker; TSCHUDI, Theo T. Effects of thermal annealing on ion-beam-sputtered SiO2 and TiO2 optical thin films. In: Optical Thin Films V: New Developments. International Society for Optics and Photonics, 1997. p. 163-175.
    [47] LIU, Yang, et al. A study on Si nanocrystal formation in Si-implanted SiO2 films by x-ray photoelectron spectroscopy. Journal of Physics D: Applied Physics, 2003, 36.19: L97.
    [48] XU, S. J., et al. Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots. Applied Physics Letters, 1998, 72.25: 3335-3337.
    [49] PRIMEAU, N.; VAUTEY, C.; LANGLET, M. The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study. Thin Solid Films, 1997, 310.1-2: 47-56.
    [50] NESBIT, L. A. Annealing characteristics of Si‐rich SiO2 films. Applied Physics Letters, 1985, 46.1: 38-40.
    [51] LE-TIAN, Zhang, et al. Thermal annealing of SiO2 fabricated by flame hydrolysis deposition. Chinese physics letters, 2003, 20.8: 1366.
    [52] AMATO, Alex, et al. High-reflection coatings for gravitational-wave detectors: State of the art and future developments. In: J. Physics: Conf. Ser. 2018. p. 012006.

    QR CODE