簡易檢索 / 詳目顯示

研究生: 徐振翔
Hsu, Chen-Hsiang
論文名稱: 僅使用標準單元實現之1GHz取樣率的峰值電源電壓落差監測器
1 GHz Sampling Rate Worst-Case IR-Drop Monitor using Only Standard Cells
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員: 呂學坤
李昆忠
蘇朝琴
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 30
中文關鍵詞: 電源電壓落差晶片監測取樣率最大週期量測製程校準
外文關鍵詞: IR-drop, On-Chip Monitoring, Sampling Rate, Maximum Clock Period Measurement, Process Calibration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在三維晶片中,不同的裸晶雖是分別製造,但是整合之後卻是使用同一個外部電源,這個電源經由封裝基座接腳必須以接力的方式,傳播至每一個晶片,由於途中經過一些【穿矽連接孔】,所需驅動的電路也比傳統二維的晶片更多,更容易造成 IR-Drop (電源電壓落差) 的現象。這種現象如果發生的話,輕則造成電路速度拖慢,重則造成錯誤的運算結果發生。因此,三維晶片更加需要有一套隨時監控IR-Drop的機制,以提供三維晶片設計者兩大可以提升可靠度的功能: (1) 驗證【電源網路】的設計無誤, (2) 於嚴重的IR-Drop 問題發生時提供診斷的依據。
    電源電壓落差監測技術被用來有效的評估晶片中電源網路的完整性,然而現有的方法無法同時達到高準確性及高取樣率。 在本篇論文裡,我們提出了一個創新的方法來解決這個困境。 首先,我們的目標由量測電壓波形中的所有取樣點取代為所有取樣點中的峰值電源電壓落差。 這項策略可以更容易達到高取樣率的量測。 第二,我們採取了週期性的校正機制來考量製程與溫度變異的影響。我們所提出的峰值電源電壓落差監測電路的另一項優點即整體電路僅使用標準單元化(standard cell)來實現。 測試晶片經過下線後量測的結果顯示,我們所提出的方法可以支援1GHz以上的取樣率並且達到平均量測誤差3.05mV,最大量測誤差為8.23mV。


    IR-drop monitoring has been an effective means to assess the power integrity in real silicon. Existing methods, however, fail to achieve a high accuracy and a high sampling rate simultaneously. In this work, we present a novel method to resolve this dilemma. First of all, we focus on the measurement of the worst-case IR-drop, instead of the entire sampled VDD waveform. This strategy can make a high sampling rate more viable. Secondly, periodic calibration can be supported to account for the process variation and the temperature change if needed. Another benefit of the proposed method is that it can be designed using only standard cells. Test chips have been fabricated and measurement results demonstrate that this method can support a sampling rate of more than 1 GHz, while achieving an average measurement error of 3.05 mV, and a worst-case measurement error of 8.23 mV.

    Abstract i 摘要 ii 致謝 iii Content iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Thesis Organization 5 Chapter 2 Preliminaries 6 Chapter 3 Proposed Methodology 8 3.1 Overview 8 3.2 Operation 10 Chapter 4 Monitor Circuit 12 4.1 Architecture of Time-to-Digital Converter 12 4.2 Pipelined Operation 15 Chapter 5 Application to Multiple-Point Monitoring 17 Chapter 6 Experimental Results 20 6.1 Test chip 20 6.2 Analysis of Process Calibration via Simulation 21 6.3 Measurement result for constant VDD voltages 23 6.4 Measurement result for sinusoidal VDD waveforms 24 6.5 Assessment of Temperature Effects 25 6.6 Performance Comparison 26 Chapter 7 Conclusion 28 Bibliography 29

    [1] J. Kim, W. Yu, H. Yu, and S. Cho, “A Digital-Intensive Receiver Front-End Using VCO-Based ADC with an Embedded 2nd-Order Anti-Aliasing Sinc Filter in 90 nm CMOS,” IEEE Solid-State Circuits Conf., pp. 176-178, Feb. 2011.
    [2] P.M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi, K. Tanabi, and J. Vital, “A 90nm CMOS 1.2V 6b 1GS/s two-step sub ranging ADC,” IEEE Solid-State Circuits Conf., pp. 2320-2329, Feb. 2006.
    [3] A. Muhtaroglu, G. Taylor, and T. Rahal-Arabi, “On-Die Droop Detector for Analog Sensing of Power Supply Noise,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 651-660, April. 2004.
    [4] A. Sehgal, Peilin Song, and Keith A. Jenkins, “On-Chip Real-Time Power Supply Noise Detector,” Proc. of IEEE European Solid-State Circuits Conf., pp. 380-383, Sept. 2006.
    [5] A. Vijayakumar, R. Kumar, and S. Kundu, “On Design of Low Cost Power Supply Noise Detection Sensor for Microprocessors,” Proc. of IEEE Computer Society Annual Symp. on VLSI, pp. 120-125, Aug. 2012.
    [6] Z. Abuhamdeh, V. D’Alassandro, R. Pico, D. Montrone, A. Crouch, and A. Tracy, “Separating Temperature Effects from Ring-Oscillator Reading to Measure True IR-Drop on a Chip,” Proc. of IEEE of Int’l Test Conf., pp. 1-10, Oct. 2007.
    [7] Z. Abuhamdeh, P. Pears, J. Remmers, A. Crouch, and B. Hannagan, “Characterize Predicted vs. Actual IR Drop in a Chip Using Scan Clocks,” Proc. of IEEE Int’l Test Conf., pp. 1-8, Oct. 2006.
    [8] R. Petersen, P. Pant, P. Lopez, A. Barton, J. Ignowski, and D. Josephson, “Voltage Transient Detection and Induction for Debug and Test,” Proc. of IEEE Int’l Test Conf., pp. 1-10, Nov. 2009.
    [9] S.-W. Chen, M.-H. Chang, W.-C. Hsieh, and Wei Hwang “Fully On-Chip Temperature, Process, and Voltage Sensors,” Proc. of IEEE Int’l Symp. on Circuits and Systems, pp. 897-900, Jun. 2010.
    [10] E. Alon, V. Stojanovic, and M.A. Horowitz, “Circuits and Techniques for High-Resolution Measurement of On-Chip Power Supply Noise,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 820-828, April 2005.
    [11] T. Rahkonen and J. Kostamovaara, “The Use of Stabilized CMOS Delay Lines for the Digitization of Short Time Intervals,” IEEE J. Solid-State Circuits, vol. 28, no. 8, pp.887-894, Aug 1993.
    [12] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Lostamovaara,“ A Low-Power CMOS Time-to-Digital Converter,” IEEE Journal of Solid-State Circuit, vol. 30, no. 9, pp. 984-990, Sep 1995.
    [13] R. Datta1, G. Carpenter, K. Nowka, and J. A. Abraham, “A Scheme for On-Chip Timing Characterization,” Proc. of IEEE VLSI Test Symp., pp. 24-29, May 2006.
    [14] P. Chen, S.-I. Liu, and J. Wu, “A CMOS Pulse Shrinking Delay Element for Time Interval Measurement,” IEEE Trans. on Circuit and System II, vol. 47, no. 9, pp. 954-958, Sept. 2000.
    [15] “CIC Reference Flow for Cell-based IC Design”, Chip Implementation Center, CIC, Taiwan, Document no. CIC-DSD-RD-08-01, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE