研究生: |
魯 宣 Lu, Hsuan |
---|---|
論文名稱: |
抑制自縛增進高分子光電量子效率以及介面電場與量子點激發電荷之交互作用 Increasing Quantum Efficiencies of Conjugated Polymers by Curbing Self-trapping and The Interactions between Substrate Fields and Excited Charges in Quantum Dots |
指導教授: |
楊長謀
Yang, Arnold C. M. |
口試委員: |
戴子安
Dai, Chi-An 鄭智嘉 Cheng, Chih-Chia 王志逢 Wang, Chih-Feng 林志維 Lin, Chih-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 159 |
中文關鍵詞: | 共軛高分子 、自縛效應 、量子效率 、量子點 、異質介面電場 |
外文關鍵詞: | Conjugated Polymers, Self-trapping, Quantum Efficiencies, Quantum Dots, Heterojunction Fields |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來放光材料如共軛高分子(conjugated polymer, CP)和量子點(quantum dot, QD)等被廣泛的應用於電子元件中,其中,CP雖然有著優秀的彈性、易加工及成本低等優點,但CP的放光效率(Quantum efficiency, QE)低迷限制了其應用發展。QD雖然在溶液態中QE極高,但用於薄膜元件中可能與基材或是基質材料產生異質介面電場,影響QE。有鑑於最近的文獻中提及透過施加應力於分子鏈段上能有效的提升CP放光強度[1-4],以及透過除潤影響膜內粒子分布[5],本篇論文將進一步研究拉伸應力導致CP的QE提升機制與其QE低迷的根本原因,以及研究異質介面電場如何影響QD內激發電荷,和透過除潤改變QD於膜內之分布進而提升QE。
拉伸CP研究中,透過光惰性高分子polystyrene (PS)受拉伸時 產生微頸縮(纖化區)機制,拉伸共軛高分子MEH-PPV、PFO及P3HTrr,探究不同CP受拉伸應力時QE的變化。當CP分散於PS內近似於單分子狀態,且受到極限拉伸(拉伸比例~300%)時,這些CP的QE都有極大的提升,主鏈最堅硬的PFO以及次堅硬的MEH-PPV甚至達到接近100 %的QE,而主鏈最柔軟的P3HTrr雖然僅達到25%的QE,但QE增加倍率為最大的12倍。對於純CP薄膜進行拉伸,並不會有如PS一樣的纖化區產生,薄膜為均勻形變,因此單層薄膜僅能拉伸至約20%應變,但透過雙層結構薄膜,利用下層PS產生之纖化區拉伸上層共軛高分子(應變約500%),PFO的QE能接近100%,MEH-PPV由於團聚效應僅上升至約50%,P3HTrr則因為結晶吸收應變能,QE幾乎無變化,結晶度能透過增大側鏈(P3EHT)來降低,結果也顯示拉伸後效率有著三倍的增益。這說明純CP薄膜拉伸須突破分子堆疊(packing)或分子鏈結(knot)才能有效的提高QE,且當分子鏈被極限拉伸時,QE能接近100%。
接著透過飛秒時間解析光譜,觀察到MEH-PPV的激發電荷能量在兩皮秒內以〜0.03 eV / ps的速率損耗,且此損耗速率在大應力(215 MPa)時幾乎被抑制。而在激發後也產生另一能量損耗較慢的路徑,約為兩皮秒內的10倍且不受應力影響。短時間內能量損耗來自分子鏈段的轉動,因此大拉伸應力能幾乎抑制分子鏈的轉動,而慢速損耗則與熱逸散有關的分子鏈段振動。基於此,我們認為CP未受應力時,分子鏈段的轉動會形成局部形變區拘束激發電荷,造成自縛現象(self-trapping),此為CP的QE低迷主因。
電場對於QD內電荷之影響實驗中,通過摻入(1 wt%)QD的絕緣高分子薄膜中於窄能帶(Si-wafer)或寬能帶(cover glass)基材上的光致發光來研究基材能隙產生之內建電場帶來的影響。首先,QD在薄膜內的分布並不均勻,但與基材種類無關,集中於表面以及靠近基材處,因而造成複雜的介面電場效應,且表面的聚集會產生表面遮蔽效應,使QD的放光減弱。於矽晶片上QD的放光強度隨電場增加迅速減小,我們認為在電場作用下電荷會透過QD的鏈狀結構滲透於矽晶片進行電荷淬滅(quenching)。而在玻璃上,因能隙較寬,PL因電場作用導致激子電荷分離而結合率下降,但下降受到量子侷限限制。
透過除潤改變QD與基材之距離,進而影響量子點放光效率,結果顯示,10 nm薄膜除潤,QD與基材之距離增加至22~26 nm,電場效應減弱,QD放光強度於矽基材增加2.5倍,但於玻璃上變化不大。而80 nm厚膜除潤,則由於電場及表面遮蔽效應,QD放光強度於矽基材減少剩約16%,於玻璃上則下降剩約70 %。
綜合以上所述,透過抑制CP分子鏈段轉動提高QE,以及基材的選擇來調整電場對於QD的放光強度,本篇論文研究對於放光材料於光電元件中的應用具有重要意義。
Recently, luminescent materials such as conjugated polymers (CPs) and quantum dots (QDs) have been widely used in electronic devices. Although CPs have excellent flexibility, easy processing, and low cost, the low quantum efficiency (QE) of CPs limits their application development. On the other hand, QD has a very high QE in the solution state, but heterojunction electric fields may be generated from the substrate or matrix material when used in thin-film devices, which affects its QE. In light of the recent studies, applying stresses on the molecular chain can effectively increase the PL intensity of CPs[1-4] as well as changing the distribution of particles in polymer films through dewetting[5], this study explored the mechanism of QE increasing of CPs caused by tensile stress, the root cause of the low QD of CPs and how the electric field of the heterogeneous interface affects the excited charge in the QD, and the improvement of the QE by changing the distribution of the QD in the film through dewetting.
In the experiment of stretching CPs, MEH-PPV, PFO, and P3HTrr were blended in optically inert polystyrene (PS) and were stretched by the micro-necking (crazing) mechanism of PS. At the highly diluted state in inert polystyrene (CP fraction c = 0.1 wt.%), all these polymers exhibited massive QE increases after stretching to large strain (~300%) with the stiff PFO and the less rigid MEH-PPV showing near 100% QE while the softest, yet crystalline, P3HTrr manifesting only 25% QE but the largest 12-fold QE enhancement. When it comes to stretching pristine CP films, nearly 100% QE was found in PFO and 50% in MEHPPV but no increase in P3HTrr because of molecular aggregations curbing effects. When decreasing intermolecular interactions among polythiophene chains by substitution of a bulkier side group (P3EHT), the stretching resulted in a ~3-fold increase in QE. This showed that the stretching of pristine CP films must break through molecular packing or molecular knots to effectively increase QE.
Through ultrafast time-resolved confocal spectroscopy, it was observed that the excess energy of excited charges in MEH-PPV lost at a rate of ~0.03 eV/ps within two picoseconds, and this loss rate was almost suppressed under high stresses (215 MPa). At the same time, another path with slower energy loss rate was also generated, which is about 10 times slower than that within two picoseconds and was independent of stresses. The fast mode was contributed from torsional relaxation of molecular chain and was able to be well inhibited by large tensile stresses while the slow mode was due to the vibration of the molecular chain related to heat dissipation. Base on this, we believed that as CPs were excited, the rotation of the molecular chain will form a local deformation zone to trap the excited charge, causing self-trapping, which is the main cause of the CP's low QE.
The experiment of substrate electric fields interacting with QDs was investigated by examining the photoluminescence (PL) of a core-shell QDs (CdSe/ZnS) embedded (1 wt.%) in polymer films on either narrow (Si-wafer) or wide (cover glass) bandgap substrate (relative to the QD). We found that the QD particles tend to segregate to surfaces and substrate boundaries, but with the depth distribution generally independent of substrate choice. The gathering of QDs in the surface layer will produce the surface blocking effect, which will weaken the light emission of the QD. On the narrow-bandgap substrate of Si-wafer, the PL diminished quickly with the field, suggestive of charge quenching via percolated pathways of structured QDs within the polymer matrix. Whereas on the wide-bandgap cover glass that behaved as non-quenching substrate, the PL decreased from increased exciton charge separation inflicted by the heterojunction field, but the PL decrease was limited by the QD nanoconfinement.
The average distance between QD and substrate is changed through polymer film dewetting, and the electric field changed consequently, which affects the PL efficiency of quantum dots. The results showed that the average distance between QD and substrate is increased to 22~26 nm when the 10 nm film is filly dewetted. The PL intensity of QDs increased by 2.5 times on the silicon substrate due to the decrease of the electric field, but little changed on the glass. In the case of 80 nm thick film dewetting, due to the electric field and surface shading effect, the QD light intensity was reduced by about 16% on the silicon substrate, and by about 70% on the glass substrate.
In conclusion, increasing QEs of CPs by hindering the rotation of CP molecular segments through large stresses and the choice of substrates to adjust the PL efficiency of QD, these researches is of great significance for the application of light-emitting materials in optoelectronic devices.
1. K. P. Tung, C. C. Chen; P. Lee, Y. W. Liu, T. M. Hong, K. C. Hwang, J. H. Hsu, J. D. White, A. C. M. Yang, ACS Nano 2011, 5, 7296-7302.
2. P. T. Chen, Y. W. Yang, G. Reiter, A. C. M. Yang, Polymer 2020, 204, 122753.
3. K. S. Shih, C. C. Chen, P.-T. Chen, Y. W. Yang, J. D. White, Y.-M. Chang, A. C. M. Yang, ACS Photonics 2015, 2, 33-42.
4. P. Lee, W. C. Li, B. J. Chen, C.-W. Yang, C. C. Chang, I. Botiz, G. Reiter, T. L. Lin, J. Tang, A. C.M. Yang, ACS Nano 2013, 7, 6658-6666.
5. S. Roy, D. Bandyopadhyay, A. Karim, R. Mukherjee, Macromol. 2015, 48, 373-382.
6. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, R. H. Friend, Chem. Phys. Lett. 1995, 241, 89-96.
7. H. Kiess, Conjugated Conducting Polymers. (Springer Science & Business Media, 2012), pp. 1.
8. M. Fox, Optical Properties of Solids. (Oxford University press, New York 2001), pp. 214-232.
9. M. Geoghegan, G. Hadziioannou, Polymer Electronics. (Oxford University, 2013), pp. 1-12.
10. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539-541.
11. A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897-1091.
12. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature 1992, 357, 477-479.
13. D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982-1984.
14. A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, A. P. Alivisatos, Appl. Phys. Lett. 1996, 69, 1432-1434.
15. C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706-8715.
16. Q. Wu, N. Zheng, Y. Li, Y. Ding, J. Membr. Sci. 2000, 172, 199-201.
17. H. S. Chen, B. Lo, J. Y. Hwang, G. Y. Chang, C. M. Chen, S. J. Tasi, S. J. J. Wang, J. Phys. Chem. B 2004, 108, 17119-17123.
18. S. H. Kang, Ch. K. Kumar, Z. Lee, K. H. Kim, C. Huh, E. T. Kim, Appl. Phys. Lett. 2008, 93, 191116.
19. B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Appl. Phys. Lett. 1995, 66, 13.
20. M. C. Schlamp, X. Peng, A. P. Alivisatos, J. Appl. Phys. 1997, 82, 1.
21. H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, M. F. Rubner, J. Appl. Phys. 1998, 83, 15.
22. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463.
23. M. C. Schlamp, X. Peng, A. P. Alivisatos, J. Appl. Phys. 1997, 82, 1.
24. I. M. Ward, Mechanical Properties of Solid polymers, 2nd ed. (john Wiley&Sons Press: New York 1983).
25. E. J. Kramer, L. L. Berger, Adv. Polym. Sci. 1990, 91/92, 1.
26. J. H. Lin, A. C. M. Yang, Macromolecules 2001,34, 3698.
27. E. J. Kramer, Adv. Polym. Sci. 1983 52/53, 1
28. A. N. Gent, In The Mechanics of fracture, AMD; (F. Erdogon, ed., ASME: New York 19, 55 1976).
29. A. C. M. Yang, R. C. Wang, M. S. Kunz, J. Polym. Sci., Polym. Phys. Ed, 1996, 34, 1141.
30. H. H. Kaush, Polymer Fracture, (Spring-Verlag: Heidel-berg, Germany 1978).
31. 蕭志郡, 清華大學材料系碩士論文, 奈米碳管表面接枝苯乙烯聚合體在聚苯乙烯薄膜內之奈米微觀機械行為研究 (2004).
32. C. H. Lin; A. C.-M. Yang, J. Mater. Sci. 2000, 35, 4231.
33. E. J. Kramer, Adv. Polym. Sci. 1983, 52/53, 1.
34. M. Kawagoe, M. Kitagawa, J. Polym. Sci.Polym. Phys. 1981, 19, 1423.
35. R. J. Fields; M. F. Ashby, Philos. Mag. 1976, 33, 33.
36. A. C.-M. Yang, E. J. Kramer, J. Polym. Sci., Polym. Phys. Ed. 1985, 23,1353.
37. A. C.-M. Yang, E. J. Kramer, C. C. Kuo, S. L. Phoenix, Macromolecules 1986, 19, 2010.
38. A. C.-M. Yang, M. S. Kunz, J. A. Logan, Macromolecules 1993, 26, 1767.
39. D. W. Bridgman, Stuedies in Large Plastic Flow and Fracture; (Harvard University Press: Cambridge, 1964) p. 9.
40. G’sell, C.; Marquez-Lucero, A. Polymer 1993, 34, 2740.
41. 林天行, 清華大學材料系碩士論文, 利用表面接枝分散多壁奈米碳管於高分子薄膜之研究 (2005).
42. E. Collini, G. D. Scholes, Science 2009, 323, 369-373.
43. T. M. Figueira-Duarte, P. G. Del Rosso, R. Trattnig, S. Sax, E. J. W. List, K. Müllen, Adv. Mater. 2010 22, 990-993.
44. L. J. Rothberg, M. Yan, S. Son, M. E. Galvin, E. W. Kwock, T. M. Miller, H. E. Katz, R. C. Haddon, F. Papadimitrakopoulos, Synth. Met. 1996 78, 231-236.
45. M. Yan, L. J. Rothberg, E. W. Kwock, T. M. Miller, Phys. Rev. Lett. 1995 75, 1992-1995.
46. G. He, Y. Li, J. Liu, Y. Yang, Appl. Phys. Lett. 2002 80, 4247-4249.
47. K. M. Nimith, M. N. Satyanarayan, G. Umesh, Opt. Mater. 2018 80, 143-148.
48. T. M. Swager, Acc. Chem. Res. 2008 41, 1181-1189.
49. Y. H. Liu, C. C. Huang, C. C. Cheng, A. C. M. Yang, Mater. Chem. Phys. 2022, 277, 125505.
50. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539-541
51. J. C. Carter, I. Grizzi, S. K. Heeks, D. J. Lacey, S. G. Latham, P. G. May, O. Ruiz de los Paños, K. Pichler, C. R. Towns, H. F. Wittmann, Appl. Phys. Lett. 1997, 71, 34.
52. D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982.
53. B. J. Schwartz, Nature 2008, 7, 427-428.
54. J. Roncali, Chem. Rev. 1992, 92, 711.
55. T. Yamamoto, K. Sanechika, A. Morita, A. J. Yamamoto, Polym. Sci., Polym. Lett. Ed. 1980, 18, 9.
56. M. Granstrom, O. Synth. Inganas, Met. 1992, 48, 21.
57. J. W. P. Lin, L. P. J. Dudek, Polym. Sci., Polym. Chem. Ed. 1980, 18, 2869.
58. K. Y. Jen, G. G. Miller, R. L. J. Elsenbaumer, Chem. Soc.,Chem Commum. 1986, 17, 1346.
59. D. L. Elsenbaumer, K. Y. Jen, R. Oboodi, Synth. Met. 1986, 15, 169.
60. V. V. Kislyuk, O. P. Dimitriev, A. A. Pud, J. Lautru, I. Ledoux-Rak, J. Phys.: Conf. Ser. 2011, 286, 012009.
61. T. Adachi, J. Brazard, R. J. Ono, B. Hanson, M. C. Traub, Z. Q. Wu, Z. Li, J. C. Bolinger, V. Ganesan, C. W. Bielawski, D. A. V. Bout, P. F. Barbara, J. Phys. Chem. Lett. 2011, 2, 12, 1400–1404
62. Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang, and Y. Cao, Macromol. 2004, 37, 6299.
63. H. C. Lin, H. H. Sung, C. M. Tsai, and K. C. Li, Polymer 2005, 46, 9810.
64. J. Liu, G. Tu, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, and F. Wang, J. Mater. Chem. 2006, 16, 1431.
65. C. H. Cheon, S. H. Joo, K. Kim, J. Jin, H. W. Shin, and Y. R. Kim, Macromol.2005, 38, 6336.
66. E. J. W. List, R. Guentner, P. S. Freitas, and U. Scherf, Adv. Mater. 2002, 14, 374.
67. C. Chi, C. Im, V. Enkelmann, A. Ziegler, G. Lieser, and G. Wegner, Chem. Eur. J. 2005, 11, 6833.
68. P. V. Lawson, J. L. Bredas, E. Zojer, R. Ganther, P. S. Freitas, M. Forster, and U. Scherf, Adv. Funct. Mater. 2004, 14, 1097.
69. H. H. Sung, and H. C. Lin, Macromol. 2004, 37, 7945.
70. B. Liu, W. L. Yu, Y. H. Lai, and W. Huang, Macromol. 2000, 33, 8945.
71. N. G. Pschirer, U. H. F. Bunz, Macromol. 2000,33, 3961.
72. M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, and R. D. Miller, Macromol. 1998, 31, 1099.
73. H. H. Sung, and H. C. Lin, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 2700.
74. C. W. Wu, C. M. Tsai, and H. C. Lin, Macromol. 2006, 39, 4298.
75. Fukuda, Masahiko, Keiji Sawada, and Katsumi Yoshino, Jpn. J. Appl. 1989, 28, 1433.
76. D. W. Bright, F. B. Dias, F. Galbrecht, U. Scherf, A. P. Monkman, Adv. Funct. Mater. 2009, 19, 67–73.
77. Q. Zhang, L. Chi, G. Hai, Y. Fang, X. Li, R. Xia, W. Huang, E. Gu, Molecules, 2017, 22, 315.
78. M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, K. S. Whitehead, E. P. Woo, Synth. Met. 2000, 111, 579.
79. D. Nassyrov, C. Muller, A. Roige, I. B. Ceballos, J. O. Osso, D. B. Amabilino, M. Garriga, M. I. Alonso, A. R. Goniac, M. C. Quiles, J. Mater. Chem. 2012, 22, 4519–4526.
80. M. E. Caruso, M. Anni, Phys. Rev. B Condens. Matter. 2007, 76, 054207.
81. M. Ariu, D. G. Lidzey,M. Sims, A. J. Cadby, P. A. Lane, D. D. C. Bradley, J. Phys. Condens. Matter. 2002, 14, 9975–9986.
82. M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo, M. Soliman, Acta. Polym. 1998, 49, 439.
83. A. L. T. Khan, P. Sreearunothai, L. M. Herz, M. J. Banach, A. Ko¨hler, Phys. Rev. B. 2004, 69, 085201.
84. J. Peet, E. Brocker, Y. Xu, and G. C. Bazan, Adv. Mater. 2008, 20,1882–188.
85. M. R. Sirtonski, S. L. McFarlane and J. G. C. Veinot, J. Mater. Chem. 2010, 20, 8147–8152.
86. A. Perevedentsev, N, Chander, J. S. Kim, D. D. C. Bradley, J. Polym. Sci. B Polym. Phys. 2016, 54, 1995.
87. E. R. Silcoff, A. S. I. Asadi, T. Sheradsky, J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 872.
88. S. H. Chen, A. C. Su, C. H. Su and S. A. Chen. Macromol. 2005, 38, 379-385.
89. M. Grell, D. D. C. Bradley, G. Ungar, J. Hill, and K. S. Whitehead. Macromol. 1999, 32, 5810-5817.
90. L. Huang, X. N. Huang, G. N. Sun, G. Cheng. L. Dan and M. Yuguang. J. Phys. Chem.C, 2012, 116: 7993-7999.
91. W. Chunwaschirasiri, B. Tanto, D. L. Huber, and M. J. Winokur, Phys. Rev. Lett. 2005, 94, 107402.
92. 童冠博, 清華大學材料系碩士論文, 奈米塑性形變引致共軛高分子單分子發光之重大增益現象與研究 (2008).
93. 張智鴻, 清華大學材料系碩士論文, 共軛高分子P3HT分子拉伸與光電效率提升之研究: 局部形變和薄膜除潤 (2012).
94. J.-L. Brédas, R. Silbey, Science 2009, 323, 348-349.
95. E. Collini, G. D. Scholes, Science 2009, 323, 369-373.
96. R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, E. O. Göbel, Phys. Rev. Lett. 1993, 70, 3820-3823.
97. G. R. Hayes, I. D. W. Samuel, R. T. Phillips, Phys. Rev. B 1995, 52, R11569-R11572.
98. G. R. Hayes, I. D. W. Samuel, R. T. Phillips, Phys. Rev. B 1996, 54, R8301-R8304.
99. K. S. Wong, H. Wang, G. Chem. Lanzani, Phys. Lett. 1998, 288, 59-64.
100. V. I. Arkhipov, E. V. Emelianova, H. Bässler, Phys. Rev. Lett. 1999, 82, 1321-1324.
101. T. G. Bjorklund, S.-H. Lim, C. J. Bardeen, J. Phys. Chem. B 2001, 105, 11970-11977.
102. T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, G. D. Scholes, J. Phys. Chem. B 2009, 113, 656-667.
103. P. Parkinson, C. Müller, N. Stingelin, M. B. Johnston, L. M. Herz, J. Phys. Chem. Lett. 2010, 1, 2788-2792.
104. N. Banerji, S. Cowan, E. Vauthey, A. Heeger, J. Phys. Chem. C 2011, 115, 9726-9735.
105. S. Westenhoff, W. J. D. Beenken, R. H. Friend, N. C. Greenham, A. Yartsev, V. Sundstrom, Phys. Rev. Lett. 2006, 97, 166804.
106. G. R. Hayes, I. D. W. Samuel, R. T. Phillips, Synth. Met. 1997, 84, 1-3, 889-890.
107. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, L. E. Brus, Phys. Rev. Lett. 1990, 65, 1623-1626.
108. A. P. Alivisatos, Science 1996, 271, 933.
109. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463-9475.
110. C. H. Lin, E. Lafalce, J. Jung, M. J. Smith, S. T. Malak, S. Aryal, Y. J. Yoon, Y. Zhai, Z. Lin, Z. V. Vardeny, V. V. Tsukruk, ACS Photonics 2016, 3, 647-658.
111. H. Shen, H. Wang, Z. Tang, J. Z. Niu, S. Lou, Z. Du, L. S. Li, CrystEngComm 2009, 11, 1733-1738.
112. J. R. Dethlefsen, A. Døssing, Nano Lett. 2011, 11, 1964-1969.
113. H. S. Chen, M. Ando, N. Murase, Mater. Lett. 2011, 65, 3146-3149.
114. Y. Qu, L. Zhang, L. An, H. Wei, Mater. Sci.-Poland 2015, 33 (4), 709-713.
115. A. Pal, S. Srivastava, R. Gupta, S. Sapra, Phys. Chem. Chem. Phys. 2013, 15, 15888-15895.
116. M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, Lee, K., Colloid Surfaces A 2010, 359, 39-44.
117. X. Wu, E. K. L. Yeow, Chem. Comm. 2010, 46, 4390-4392.
118. 楊雅薇, 清華大學材料系碩士論文, 共軛高分子薄膜之分子應力與分子堆積研究 (2015) .
119. T. Vilmin and E. Raphael, Europhy. Lett. 2005, 72, 781.
120. G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphael, Nat. Mater. 2005, 4, 754.
121. A. Vrij, Discuss. Faraday Soc. 1966, 42, 23.
122. J. W. Cahn, J. Chem. Phy. 1965, 42, 93.
123. M. Sferrazza, C. Xiao, R.A.L. Jones, D.G. Bucknall, J. Webster, J. Penfold, Phys. Rev. Lett. 1997, 78, 3693.
124. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 2001, 86, 5534-5537.
125. J. L. Masson, P. F. Green, Phy. Rev. Lett. 2002, 88, 205504-1.
126. S. Al Akhrass, G. Reiter, S. Y. Hou, M. H. Yang, Y. L. Chang, F. C. Chang, C. F. Wang, A. C. M. Yang, Phys. Rev. Lett. 2008, 100, 178301.
127. R. Mukherjee, A. Sharma, Soft Matter 2015, 11, 8717-8740.
128. G. Reiter, Phy. Rev. Lett. 1922, 68, 75.
129. K. Jacobs, S. Herminghaus, and K.R. Mecke, Langmuir 1998, 14, 965.
130. G. Reiiter, Langmuir 1993, 9, 1344.
131. Chakrabarty, P.; Ghorai, A.; Ray, S. K.; Mukherjee, R., ACS Appl. Electr. Mater. 2020, 2, 2895-2905.
132. L. Rayleigh, Proc. London Math. Soc. 1978, 10, 4.
133. A. Vrij, Discuss. Faraday Soc. 1966, 42, 23.
134. K.Y. Suh, H.H. Lee, Phys. Rev. Lett. 2001, 87, 135502.
135. A. Sharma, J. Mittal, Phys. Rev. Lett. 2002, 89, 186101.
136. M. Sferrazza, M. Heppenstall-Butler, R. Cubitt, D. Bucknall, J. Webster, R. A. L. Jones, Phys. Rev. Lett. 1998, 81, 5173.
137. G. Reiter, A. Sharma, A. Casoli, M.-O. David, R. Khanna, P. Auroy, Langmuir 1999, 15, 2551-2558.
138. R. Xie, A. Karim, J. F. Douglas, C. C. Han, R. A. Weiss, Phys. Rev. Lett. 1998, 81, 1251.
139. T. G. Stange, D. F. Evans, Langmuir 1997, 13, 4459.
140. C. W. Yeh, G. H. Chen, S. J. Ho, H.-S. Chen, ACS Appl. Nano Mater. 2019, 2, 5290-5301.
141. C. C. Hung, S. J. Ho, C. W. Yeh, G. H. Chen, J. H. Huang, H. S. Chen, J. Phys. Chem. C 2017, 121, 28373-28384.
142. Multimode SPM instruction manual ver. 4.31, Digital Instruments, Veeco Metrology Group.
143. 林鶴南, 李龍正, 劉克迅, 原子力顯微鏡及其在半導體研究上的應用,科儀新知 17, 13 (1996)
144. 汪建民主編, 材料分析,中國材料科學學會 (1998)
145. Flinn Scientific, Inc. 2016, No. 10307 061616.
146. J. Arlt, D. Tyndall, B. R. Rae, D. D. U. Li, J. A. Richardson, R. K. Henderson, Rev. Sci. Instrum. 2013, 84, 103105.
147. 吳柏融, 清華大學材料系碩士論文, 硬桿型共軛高分子PFO分子機械拉伸影響光電效率以及與較柔軟分子之比較研究, 2020.
148. 翁宗民, 清華大學材料系碩士論文, 共軛高分子MEH-PPV光電行為與機械應力之關係: 單分子與跨分子作用之探討 (2014).
149. A. Qin, J. W. Y. Lam, B. Z. Tang, Prog. Polym. Sci. 2012, 37, 182-209.
150. S. T. Li, Y. C. Lin, S. W. Kuo, W. T. Chuang, J. L. Hong, Polym. Chem. 2012, 3, 2393-2402.
151. H. J. Yen, J. H. Wu, W. C. Wang, G. S. Liou, Adv. Opt. Mater. 2013, 1, 668-676.
152. H. J. Yen, C. J. Chen, G. S. Liou, J. Chem. Soc., Chem. Commun. 2013, 49, 630-632.
153. T. Virgili, D.G. Lidzey, D.D.C. Bradley, Synth. Met. 2000, 111, 203.
154. L. Hou, S. Adhikari, Y. Tian, I. G. Scheblykin, and M. Orrit, Nano Lett. 2017, 17, 1575.
155. S. Cook, A. Furube, and R. Katoh, Energy Environ. Sci. 2008, 1, 294.
156. V. Ho, B. W. Boudouris, R. A. Segalman, Macromol. 2010 43, 7895-7899.
157. L. Brillouin, Wave Propagation and Group Velocity, (New York: Academic Press Inc. 1960).
158. C. De Leener, E. Hennebicq, J. C. Sancho-Garcia, D. J. Beljonne, Phys. Chem. B 2009, 113, 1311-1322.
159. D. M. Basko, E. M. Conwell, Phys. Rev. B 2002, 66, 155210.
160. T. Radhakrishnan, Proc. Indian Acad. Sci. 1951, 31, 22-34.
161. H. Schlichting, Boundary Layer Theory, 8th Ed., (McGraw-Hill, New York, 2000).
162. L. Rosenhead, Laminar Boundary Layers, (Oxford University Press, London, 1963).
163. Y. J. Huang, J. W. Yeh, A. C. M. Yang, Materialia, 2021, 15, 100978.
164. W. M. Hess, Microscopy in the Study of Elastomer Reinforcement by Pigment Fillers, in Reinforcement of Elastomers, (G. Kraus, Ed., Interscience, New York, 1965), Chapter 6.
165. J. C. Maxwell, A Treatise on Electricity and Magnetism. 1954