研究生: |
梁明傑 Liang, Ming-Chieh |
---|---|
論文名稱: |
以台積電0.18微米製程設計錦囊及蒙地卡羅分析法設計十二位元每秒二百萬次取樣率電流導向式數位類比轉換器 A 12-Bit 200MS/S Current-Steering DAC with TSMC 0.18um PDK Monte-Carlo-Analysis |
指導教授: |
林永隆
Lin, Youn-Long |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 產業研發碩士積體電路設計專班 Industrial Technology R&D Master Program on IC Design |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 電流導向式數位/類比轉換器 、十二位元數位/類比轉換器 、數位/類比轉換器 、設計錦囊 、0.18微米 、蒙地卡羅 、電路佈局 、結構圖 、模擬 |
外文關鍵詞: | Current-Steering DAC, 12-Bit DAC, DAC, Design Kit, 0.18um, Monte Carlo, Circuit Layout, schematic, simulation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主要是提出十二位元每秒二百萬次取樣率電流導向式數位/類比轉換器(Current-Steering DAC)。該轉換器利用5+7區段式電流導向式數位/類比轉換器架構方式設計。
本研究採用區段式電流導向式數位/類比轉換器之架構設計,其中5位元的高位元(MSB)為等電流源(Unary Current Cell),並配合溫度器解碼(Thermometer Code)等電流源的方式來降低差動非線性誤差(Differential Nonlinearity Error)及縮小面積。另外7位元(LSB)部份採用加權二進制電流源(Binary-Weighted Current Cell)。為了使12位元數位輸入訊號的同步與降低突波能量,透過數位門閂(Digital Latch)電路來改善,而在差動開關(Differential Switch)的切換順序,則採用二維距心式之電流源開關切換順序;並為了增加輸出阻抗及提高SFDR,在高、低位元之電流源設計方面,皆採用疊接電流源(Cascode Current Cell)方式設計。
為了達到每秒二百萬次取樣率及1mm2面積設計規格,本研究利用蒙地卡羅
及台積電0.18微米製程設計錦囊,透過不匹配模型(Mismatch-Model)與蒙地卡羅分析法進行設計,再根據Jose Bastos等人所提出最小面積乘積(WL)min,在設計的過程中透過此方法可使設計的電路在電晶體的尺寸縮小有很大的改善,並能夠在良率的提升上有相當大的改善,除此之外設計者能在未做佈局前就能得知,目前所設計的電路是否能滿足在製程變異(Process-Variation)的情況下仍能正常的運作,這對整個晶片的設計流程(Design-Flow)有相當大的助益。
蒙地卡羅模擬結果,以輸入訊號為100MHz且取樣率為200MHz的情況下, DNL及INL分別為0.6LSB及0.8LSB、晶片面積為0.2mm2。該晶片採用TSMC 0.18um 1P6M CMOS 製程來實現。
We propose a 12-Bit 200MS/S Current-Steering DAC based on a Segmented (5+7) current-steering architecture. In order to decrease the differential nonlinearity error (DNL) and reduce area, we employ Unary-Current cell with thermometer code decoder for the 5MSBs and Binary-Weighted Current Cell for the 7LSBs. In order to synchronize inputs and improve glitch energy, we use a digital latch approach. Differential switch order is very critical for DNL, so we use the Two Dimensional Centroid method. In order to enhance DAC output impedance and SFDR, both the MSB and LSB are implemented with Cascode Current Cell.
To meet the 200MS/S and 1mm2 area spec, we perform Monte-Carlo Analysis with TSMC 0.18um Process Design Kit (PDK) and Mismatch Model. Because the Mismatch Model includes Process-Variation information, it can achieve more simulation accuracy than the corner model.
Monte-Carlo simulation result, shows that when the input signal is 100MHz and sample rate is 200MHz, we have DNL=0.6LSB , and INL =0.8LSB. The chip area is 0.2mm2 in a TSMC 0.18um 1P6M CMOS Process.
[1] M. J. Bell, "An LCD Column Driver Using a Switch Capacitor DAC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 40, pp. 2756-2765, 2005.
[2] J.-D. Chang, H.-H. Ou, and B.-D. Liu, "A 10-bit 350-MSample/s Nyquist CMOS D/A Converter," in IEEE Asia-Pacific Conference on Circuits and Systems, 2004, pp. 621-623.
[3] W.-S. Chou, S.-C. Yang, F.-L. Hsueh, H.-C. Huang, and C.-J. H. e. al., "A Low-Cost Triple-Channel 10-bit 250MHz DAC IP in 65nm CMOS Process," in ISCAS, 2007, pp. 3594 - 3597
[4] J. M. Fournier and P. Senn, "A 130-MHz 8-b CMOS Video DAC for HDTV Applications," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 26,No.7, pp. 1073-1077, 1991.
[5] Jin-Park, S.-C. Lee, and S.-H. Lee., "3V 10b 70MHz CMOS D/A Converter in 0.2mm2," Electronics Letters, vol. 35,No.24, pp. 2071-2073, 1999.
[6] D.-J. Liu, C.-H. Lin, S.-C. Yi, and J.-J. Chen, "A Resistor String DAC for Video Processing," in the Third International Conference on International Information Hiding and Multimedia Signal Processing 2007, pp. 503-506.
[7] Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, "A 10-b 70-MS/s CMOS D/A converter," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 26, No. 4, pp. 637-642, 1991.
[8] S. Y. Park, H. W. Cho, and K. S. Yoon, "A 3.3 V-110 MHz 10-bit CMOS current-mode DAC," in IEEE Asia-Pacific Conference 2002, pp. 173-176.
[9] Pernull, H. Draxelmayr, D. Scheffler, G. S. E. f. Mikroelektronik, and Villach, "A digital display processor with integrated 9 bit triple DAC for enhanced TV applications," in IEEE Transactions on Consumer Electronics. vol. 39, 1993, pp. 247 - 254
[10] Y. Ren, F. Li, C. Zhang, and Z. Wang, "A 400MS/s 10-bit Current-steering D/A Converter," 2009.
[11] T. Wu, C. Jih, J. Chen, and C. Wu, "A low glitch 10-bit 75-Mhz CMOS video D/A converter," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 30, No.1, pp. 68-72, 1995.
[12] Y. Yongsang and S. Minkyu, "Design of a 1.8V 10bit 300MSPS CMOS digital-to-analog converter with a novel deglitching circuit and inverse thermometer decoder," in IEEE International Asia-Pacific Conference on Circuits and Systems. vol. 2, 2002, pp. 311-314.
[13] A. V. d. Bosch, M. Borremans, J. Vandenbussche, G. V. d. Plas, A. Marques, J. Bastos, M. Steyaert, G. Gielen, and W. Sansen, "A 12 bit 200 MHz Low Glitch CMOS D/A Converter," in CUSTOM INTEGRATED CIRCUITS CONFERENCE, 1998, pp. 249-252.
[14] G. Raja† and B. Bhaumik‡, "16-bit Segmented Type Current Steering DAC for Video Applications," in VLSI Design, International Conference, 2006, pp. 63-68.
[15] J. H. Humes, C. Diorio, M. Thomas, and M. Figueroa, "A 300-MS/s 14-bit Digital-to-Analog Converter in Logic CMOS," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 38, pp. 734-740, 2003.
[16] B. Lee, B. Kim, J. Lee, S. Hwang, M. Song, and T. Wysocki, "A Small Chip Area 12-b 300MS/s Current Steering CMOS D/A Converter Based on a Laminated-Step Layout Technique," in 18th European Conference on Circuit Theory and Design, 2007, pp. 882-885.
[17] D. Marche and Y. Savaria, "Modeling R-2R Segmented-Ladder DACs," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 57, pp. 31-43, 2010.
[18] A. Marques, J. Bastos, A. V. d. Bosch, J. Vandenbussche, M. Steyaert, and W. Sansen, "A 12b Accuracy 300MSamplels Update Rate CMOS DAC," in ISSCC, 1998, pp. 216-217.
[19] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, "A 12-Bit Intrinsic Accuracy High-Speed CMOS DAC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 33,No.12, pp. 1959-1969, 1998.
[20] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching Properties of MOS Transistors," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 24,No.5, pp. 1433-1440, 1989.
[21] A. V. d. Bosch, M. Borremans, M. Steyaert, and W. Sansen, "A 12b 500MSample/S Current-Steering CMOS D/A Converter," in ISSCC, 2001, pp. 366 - 367, 466.
[22] A. R. Bugeja, B.-S. Song, P. L. Rakers, and S. F. Gillig, "A 14-b, 100-MS/s CMOS DAC Designed for Spectral Performance," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 34, pp. 1719-1732, 1999.
[23] G. A. M. V. d. Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert, and G. G. E. Gielen, "A 14-bit Intrinsic Accuracy Q2 Random Walk CMOS DAC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 34,NO. 12, pp. 1708-1718, 1999.
[24] K. Doris, J. Briaire, D. Leenaerts, M. Vertreg, and A. v. Roermund, "A 12b 500MS/s DAC with >70dB SFDR up to 120MHz in 0.18µm CMOS," in ISSCC, 2005, pp. 116-118.
[25] A. V. d. Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, "A 10-bit 1-GSamples/s Nyquist Current-Steering CMOS D/A Converter," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 36,No.3, pp. 315-324, 2001.
[26] A. R. Bugeja and B.-S. Song, "A Self-Trimming 14-b 100-MS/s CMOS DAC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 35, pp. 1841-1852, 2000.
[27] Y. Cong and R. L. Geiger, "A 1.5-V 14-Bit 100MS/s Self-Calibrated DAC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 38,No.12, pp. 2051-2060, 2003.
[28] M. P. Tiilikainen, "A 14-Bit 1.8-V 20-mW 1-mm2 CMOS DAC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 36,No.7, pp. 1144-1147, 2001.
[29] H. Traff, "Novel approach to high-speed CMOS current comparators," Electronics Letters, vol. 28, pp. 310-312, 1992.
[30] D.-L. Shen, Y.-C. Lai, and T.-C. Lee, "A 10-Bit Binary-Weighted DAC with Digital Background LMS Calibration," in IEEE Asian Solid-State Circuits Conference, 2007, pp. 352-355.
[31] D. A. Johns and K. Martin, Analog Integrated Circuit Design. University of Toronto: A JOHN WILEY & SONS, INC., 1997.
[32] R. v. d. Plassche, CMOS INTEGRATED ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERTERS. Netherlans: Kluwer Academic, 2003.
[33] W. M. C. Sansen, Analog Design Essentials. Leuven, Belgium: Springer, 2006.
[34] M. Gustavsson, J. J. Wikner, and N. N. Tan, CMOS DATA CONVERTERS FOR COMMUNICATIONS. Netherlands: Kluwer Academic, 2000.
[35] J. Deveugele and M. S. J.Steyaert, "A 10-bit 250-Ms/s Binary-Weighted Current-Steering DAC," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 41,No. 2, pp. 320-329, 2006.
[36] C. H. Lin and K. Bult, "A 10-b, 500MSample/s CMOS DAC in 0.6 mm2," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 33,No.12, pp. 1948-1958, 1998.
[37] J.Vandenbussche, G. V. d. Plas, W.Daems, A. V. d. Bosch, G.Gielen, M. Steyaert, and W. Sansen, "Systematic Design of High-Accuracy Current-Steering D/A Converter Macrocells for Integrated VLSI Systems," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: ANALOG AND DIGITAL SIGNAL PROCESSING, vol. 48,No.3, pp. 300-309, MARCH 2001.
[38] A. Hastings, The ART of ANALOG LAYOUT. New Jersey: Prentice-Hall, Inc., 2001.
[39] J. T. Wu, "Analog Integrated Circuit (2)," Hsinchu: National Chiao-Tung University Department of Electronics Engineering, 2005.
[40] K. O’Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, "A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44mm2," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 39,No. 7, pp. 1064-1072, 2004.
[41] H.-H. Cho, C.-Y. Park, G.-S. Yune, and K.-S. Yoon, "A 10-Bit 210 MHz CMOS D/A Converter for WLAN," in IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, 2004, pp. 106-109.
[42] Z. Hao, L. Yuan, W. Ni, Y. Shi, and G. Hao, "A 10-bit CMOS 300 MHz Current-steering DA Converter," in ICCSC, 2008, pp. 303 - 306.
[43] M. Song, B. Kang, and E. Joe, "A 10-BIT 80MHZ 3.0V CMOS D/A CONVERTER FOR VIDEO APPLICATIONS," in IEEE Transactions on Consumer Electronic. vol. 43, 1997, pp. 868-872.