簡易檢索 / 詳目顯示

研究生: 蘇其祥
Su, Chi-Shiang
論文名稱: 運用光二極體介電泳力操控聚苯乙烯球
Manipulation of polystyrene sphere through a photodiode-induced dielectrophoretic force
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 洪毓玨
Hung, Yu-Chueh
劉承賢
Liu, Cheng-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 73
中文關鍵詞: 介電泳力光二極體
外文關鍵詞: dielectrophoretic force, photodiode
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前在整合微機電技術與生物醫學領域的[Lab-on-a-chip]的概念的研究上,通常需要一個工具可以在前端選擇樣品,或是移動樣品,因此相當多的研究開始往控制微小物體的研究上前進,在此方面,以介電泳力最為熱門,目前利用介電泳力來移動微小物體中,最廣為使用的是光誘發介電泳(Optically-induced dielectricphoresis) 以及旅波式介電泳(Traveling-wave dielectrophoresis twDEP)。
      目前旅波式介電泳無法做多點操控的移動,而光誘發介電泳力需要上下兩平行版,但是整合到微流體等生醫方面,單一下會更有有優勢。因此目前我們提出運用光二極體誘發介電泳移動聚苯乙烯球的概念,希望能達到只用單一下平板就能進行多點操控的功能,概念可以看成P-oxide-N 放在本質矽基板的結構,並外加逆偏電壓,無照光時壓降都在絕緣層中並在空間上方形成電場,但是當有光照在元件上方時,由於光電流通過元件內電阻,把絕緣層上的壓降轉到電阻上,導致空間中電場減弱,使得受激發出正介電泳力的粒子,會往強電場的方向去。
      但我們元件的內電阻不夠,必須外加電阻來完成我們的目標,所以結尾方面,我們也提出新的設計使內電阻增加。


     Biological lab on chip usually requires a tool to move biological samples on an integrated device. Therefore, there is lots of research works focused on manipulating minute objects in a microfluidic chip. Two types of mechanisms are widely applied; one is optically-induced dielectricphoresis (ODEP) and the other is traveling-wave dielectrophoresis (twDEP). TwDEP cannot do multi-object control, and ODEP usually requires two parallel plates. A single control plate has advantage in integration with a micro-fluidic platform. In this research work, we present a photodiode-induced dielectrophoretic force to control Polystyrene spheres in liquid.
    The device is made of interdigitated lateral P-N junctions on an intrinsic silicon substrate. When the device operates in reverse bias without illumination, the voltage drop across the insulation layer exhibits a strong electric field in the space. On the other hand, when the device operates in reverse bias under illumination, the voltage drop reduces because photocurrent would pass through a resistor, which makes the electric field become weak. And the difference of induced positive DEP can make the particles toward a stronger electric field.
    While the internal resistance of our device is not sufficient, we need to add an external resistor to achieve our goal. At the end, we propose a new design of device to increase the internal resistance.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧以及研究動機 2 1.2.1 光鑷夾(optical tweezer) 2 1.2.2 微夾子(Micro-gripper) 4 1.2.3 磁力 5 1.2.4 介電泳(dielectrophoresis) 7 1.3 論文架構 11 第二章 元件操控方式及理論背景 12 2.1 理論背景 12 2.1.1 介電泳原理 12 2.1.2 Clausius-Mossotti因子 14 2.1.3 馬克斯威爾張量(Maxwell stress tensor)[22, 23] 15 2.1.4 光二極體(Photo Diode) 17 2.2 元件操控原理 19 2.2.1 元件結構 19 2.2.2 外加電壓於元件之情況 20 2.2.3 PSB球的排列,並用投影機投射圖案定義非排列區塊 25 2.2.4 利用投影機投射出的圖案移動PSB球 26 第三章 元件介電泳力模擬 29 3.1 1um聚苯乙烯球排列模擬與元件尺寸最佳化設計 29 3.2 運用投影機光源操控聚苯乙烯球模擬 33 第四章 元件製作 37 4.1 元件製作流程圖: 37 4.2 元件製作流程表 45 4.3 蝕刻參數表,及製程說明 52 第五章 實驗量測與結果 60 5.1 實驗量測架構介紹: 60 5.2 元件電流-電壓曲線 61 5.3 1um聚苯乙烯球排列現象觀察 63 第六章 未來展望與結論 66 6.1 元件改善與未來元件設計 66 6.2 結論 70 參考文獻 71

    1 Ashkin, A., and Dziedzic, J.: ‘Optical trapping and manipulation of viruses and bacteria’, Science, 1987, 235, (4795), pp. 1517-1520
    2 Kim, C.J., Pisano, A.P., and Muller, R.S.: ‘Silicon-processed overhanging microgripper’, Journal of Microelectromechanical Systems, 1992, 1, (1), pp. 31-36
    3 Keekyoung, K., Xinyu, L., Yong, Z., and Yu, S.: ‘Micronewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback’, in Editor (Ed.)^(Eds.): ‘Book Micronewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback’ (2008, edn.), pp. 3100-3105
    4 Keekyoung, K., Xinyu, L., Yong, Z., and Yu, S.: ‘Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback’, Journal of Micromechanics and Microengineering, 2008, 18, (5), pp. 055013
    5 Hakho, L., Purdon, A.M., and Westervelt, R.M.: ‘Micromanipulation of biological systems with microelectromagnets’, IEEE Transactions on Magnetics, 2004, 40, (4), pp. 2991-2993
    6 H. Lee, A.M.P., R.M. Westervelt: ‘Manipulation of Biological Cells using a Microelectromagnet Matrix’, Applied Physics Letters, 2004, 85, pp. 1063
    7 Pohl, H.A.: ‘ Dielectrophoresis’, Cambridge University, 1978
    8 Gagnon, Z., Mazur, J., and Chang, H.-C.: ‘Integrated AC electrokinetic cell separation in a closed-loop device’, Lab on a Chip, 2010, 10, (6), pp. 718-726
    9 Gao, J., Sin, M.L., Liu, T., Gau, V., Liao, J.C., and Wong, P.K.: ‘Hybrid electrokinetic manipulation in high-conductivity media’, Lab Chip, 2011, 11, (10), pp. 1770-1775
    10 Ling, S.H., Lam, Y.C., and Kua, C.H.: ‘Particle streaming and separation using dielectrophoresis through discrete periodic microelectrode array’, Microfluidics and Nanofluidics, 2011, 11, (5), pp. 579-591
    11 Burgarella, S., Merlo, S., Dell’Anna, B., Zarola, G., and Bianchessi, M.: ‘A modular micro-fluidic platform for cells handling by dielectrophoresis’, Microelectronic Engineering, 2010, 87, (11), pp. 2124-2133
    12 Hatanaka, H., Yasukawa, T., and Mizutani, F.: ‘Detection of surface antigens on living cells through incorporation of immunorecognition into the distinct positioning of cells with positive and negative dielectrophoresis’, Analytical chemistry, 2011, 83, (18), pp. 7207-7212
    13 Kurakazu, T., Kuribayashi-Shigetomi, K., Matsunaga, Y.T., Kimura, H., Fujii, T., Sakai, Y., and Takeuchi, S.: ‘Selective retrieval of microparticles in microchambers using electrolytically generated bubbles for cell array applications’, Sensors and Actuators B: Chemical, 2011, 159, (1), pp. 229-233
    14 Choi, W., Kim, J.S., Lee, D.H., Lee, K.K., Koo, D.B., and Park, J.K.: ‘Dielectrophoretic oocyte selection chip for in vitro fertilization’, Biomedical microdevices, 2008, 10, (3), pp. 337-345
    15 Cheng, I.-F., Chung, C.-C., and Chang, H.-C.: ‘High-throughput electrokinetic bioparticle focusing based on a travelling-wave dielectrophoretic field’, Microfluidics and Nanofluidics, 2011, 10, (3), pp. 649-660
    16 Eunpyo Choi, B.K.a.J.P.: ‘High-throughput microparticle separation using gradient traveling wave dielectrophoresis’, Journal of Micromechanics and Microengineering, 2009, 19
    17 Ino, K., Ishida, A., Inoue, K.Y., Suzuki, M., Koide, M., Yasukawa, T., Shiku, H., and Matsue, T.: ‘Electrorotation chip consisting of three-dimensional interdigitated array electrodes’, Sensors and Actuators B: Chemical, 2011, 153, (2), pp. 468-473
    18 Morganti, E., Collini, C., Cunaccia, R., Gianfelice, A., Odorizzi, L., Adami, A., Lorenzelli, L., Jacchetti, E., Podestà, A., Lenardi, C., and Milani, P.: ‘A dielectrophoresis-based microdevice coated with nanostructured TiO2 for separation of particles and cells’, Microfluidics and Nanofluidics, 2011, 10, (6), pp. 1211-1221
    19 Chiou, P.Y., Ohta, A.T., and Wu, M.C.: ‘Massively parallel manipulation of single cells and microparticles using optical images’, Nature, 2005, 436, (7049), pp. 370-372
    20 Pohl, H.A.: ‘The Behavior of Neutral Matter in Nonuniform Electric Fields’, Cambridge Univ. Press, 1978
    21 Hughes, M.P.: ‘Nanoelectromechanics in Engineering and Biology CRC Press’, 2002
    22 Brown, L.S., and Cassidy, J.P.: ‘Stress-tensor trace anomaly in a gravitational metric: General theory, Maxwell field’, Physical Review D, 1977, 15, (10), pp. 2810-2829
    23 Wang, X., Wang, X.-B., and Gascoyne, P.R.C.: ‘General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method’, Journal of Electrostatics, 1997, 39, (4), pp. 277-295
    24 倪中华, 易., 朱树存,宋春峰: ‘基于光诱导介电泳的微纳米生物粒子操纵平台关键技术’, 中国科学, 2009, 第39卷 第10期, pp. 1635 ~ 1642

    QR CODE