研究生: |
柯韋綸 Ke, Wei-Lun |
---|---|
論文名稱: |
1. 雙核鉬金屬多重鍵錯合物之合成與結構研究 2. 鈷、鎳及釕五甲基環戊二烯基錯合物之合成與結構研究 1. Synthesis and Characterization of the Multiply-Bonded Dimolybdenum Complexes 2. Synthesis and Characterization of Co, Ni and Ru Complexes Supported by the Pentamethylcyclopentadienyl Ligand |
指導教授: |
蔡易州
Tsai, Yi-Chou |
口試委員: |
劉瑞雄
許智能 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 鉬金屬多重鍵 、五甲基環戊二烯基 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的第一部分主要研究目標為合成出具低配位、低價數之雙鉬金屬多重鍵錯合物。合成上我們將雙鉬金屬錯合物Mo2Cl2[µ-HC(N- p-tolyl)2]3作為起始物。藉由加入不同當量數的KC8後,分別可得到兩個不同產物,第一個為風車型結構的雙鉬四重鍵化合物Mo2(µ-HC(N-p-tolyl)2)3C12-µ-K(benzo-15-crown-5) (1),其上的皇冠醚與陰離子部分的氯有著交互作用力存在。第二個為活化benzo-15-crown-5 ether的C-O鍵結並脫去一分子乙烯的產物[Mo2(µ-HC(N-p-tolyl)2)3(µ-o-OC6H4O(CH2CH2O)3ÉK)]2 (2)。
第二部分主要研究目標為聚烯類與五甲基環戊二烯基錯合物的合成與結構研究。在鈷金屬錯合物部分,可藉由控制去質子化的五甲基環戊二烯基的當量數,簡單地將兩價鈷金屬起始物還原成一價鈷,得到三個文獻上已發表的鈷一價產物(η5-C5Me5)Co(η4-C8H12)、[(η5-C5Me5)Co]2(µ-η4:η4-C8H8)及(η5-C5Me5)Co(η4-C8H8) (3)。將此系統套用在鎳金屬上,也可藉由控制不同的碘化鎳當量數及與不同聚烯(環辛二烯、環辛四烯)反應後,得到五個不同的產物,有三個為五甲基環戊二烯基與聚烯類產生碳-碳鍵偶合的產物(η5-C5Me5)Ni(η1:η2-2-η1-C5Me5-cyclooct-5-enyl) (4)、(η5-C5Me5)Ni (η1:η2-2-η1-C5Me5-cyclooct-3,5-diene-7-enyl) (6)及(η5-C5Me5)Ni (η1:η2-3-η1-C5Me5-cyclooct-2,5-diene-7-enyl) (7),而另外兩個產物為鹽類化合物[(η5-C5Me5)Ni(η4-C8H12)][(µ-η5:η5-C5Me5)(NiI2)2] (5)及[Li(THF)4][(µ-η5:η5-C5Me5)(NiI2)2] (8)。
如果將文獻上已發表的(η5-C5Me5)RuCl(η4-C8H12)作為起始物,加入兩當量的KC8,會使得環辛二烯變成環辛三烯,釕金屬抓去一氫原子,生成(η5-C5Me5)RuH(η4-C8H10) (9)。
實驗室過去所發表的低配位釩(I)雙烯酮亞胺基化合物(µ-η6: η6-C7H8)[V(Nacnac)]2 (Nacnac = HC(C(Me)NC6H3-2,6-iPr2)2)具有高反應性,其可活化諸多小分子,在此將其與過量一氧化碳反應,可得到[(Nacnac)V](µ-η1:η1-CO)3[V(Nacnac)(THF)] (10)。值得注意的是,錯合物10也可藉由(Nacnac)V(NSiMe3)2與過量一氧化碳反應而產生,但(Nacnac)V(NSiMe3)2卻無法由錯合物10與Me3SiN3反應而得到。
Abstract In the presence of benzo-15-crown-5 ether, KC8 reduction of Mo2Cl2[μ-HC(N-p-tolyl)2]3 resulted in the isolation of a quadruply-bonded paddlewheel complex, Mo2(µ-HC(N-p-tolyl)2)3C12- µ-K(benzo-15-crown-5) (1). When the amount of KC8 was increased from 2 to 6 equiv, a dimeric tetranuclear complex [Mo2(µ-HC(N-p-tolyl)2)3(µ-o-OC6H4O(CH2CH2O)3□K)]2 (2) was generated by a 2-electron reductive cleavage of two C-O bonds of the benzo-15-crown-5 ether. Reaction of a mixture of CoI2 and lithium pentamethylcyclopentadienide with polyolefins, 1,5-cyclooctadiene and 1,3,5,7-cyclooctatetraene, led to the formation of three known complexes (η5-C5Me5)Co(η4-C8H12), [(η5-C5Me5)Co]2(µ-η4:η4-C8H8) and (η5-C5Me5)Co(η4-C8H8) (3), respectively. However, treatment of a mixture of NiI2 and lithium pentamethylcyclopentadienide with polyolefins gave rise to a series of C-C coupling complexes (η5-C5Me5)Ni(η1:η2-2-η1-C5Me5-cyclooct-5-enyl) (4), (η5-C5Me5)Ni (η1:η2-2-η1-C5Me5-cyclooct-3,5-diene-7-enyl) (6) and (η5-C5Me5)Ni (η1:η2-3-η1-C5Me5-cyclooct-2,5-diene-7-enyl) (7), which were formed via a C-C coupling between the pentamethylcyclopentadienide and the polyolefin. Interestingly, when the amount of lithium pentamethylcyclopentadienide was reduced, two inverted-sandwich dinickel complexes [(η5-C5Me5)Ni(η4-C8H12)][(µ-η5:η5-C5Me5)(NiI2)2] (5) and [Li(THF)4][(µ-η5:η5-C5Me5)(NiI2)2] (8) were obtained. Besides, reduction of (η5-C5Me5)RuCl(η4-C8H12) by KC8 led to the isolation of a hydride complex, (η5-C5Me5)RuH(η4-C8H10) (9). Treatment of the inverted-sandwich divanadium complex (µ-η6:η6-C7H8)[V(Nacnac)]2 (Nacnac = HC(C(Me)NC6H3-2,6-iPr2)2) with CO engendered the formation of [(Nacnac)V](µ-η1:η1-CO)3 [V(Nacnac)(THF)] (10), where three isocarbonyl ligands bridge two vanadium centers in an “end-on” mode. Notably, complex 10 can also be generated from the injection of CO to the vanadium bis(imido) complex (Nacnac)V(NSiMe3)2, whereas (Nacnac)V(NSiMe3)2 can not be obtained from reaction of Me3SiN3 and complex 10.
1. Kauffman, G. B. Coord. Chem. Rev. 1973, 9, 339.
2. Kauffman, G. B. Coord. Chem. Rev. 1974, 12, 105.
3. Kauffman, G. B. Coord. Chem. Rev. 1975, 15, 1.
4. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Science 1964, 145, 1305.
5. Cotton, F. A.; Harris, C. B. Inorg. Chem. 1965, 4, 330.
6. Tsai, Y.-C.; Lin, Y.-M.; Yu, J.-S. K.; Hwang, J.-K. J. Am.Chem. Soc. 2006, 128, 13980.
7. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science 2005, 310, 844.
8. Tsai, Y.-C.; Hsu, C.-W.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. Angew. Chem. Int. Ed. 2008, 47, 7250.
9. Hsu, C.-W.; Yu, J.-S. K.; Yen, C.-H.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2008, 47, 9933.
10. Efremov, Y. M.; Samoilova, A. N.; Kozhukhovsky, V. B.; Gurvich, L. V. J. Mol. Spectrosc. 1978, 73, 430.
11. Tsai, Y.-C.; Chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. J. Am.Chem. Soc. 2009, 131, 12534.
12. 劉信呈,國立清華大學碩士學位論文,2010。
13. Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1058.
14. Green, J. C.; Powell, P.; Van Tilborg, J. E. Organometallics 1984, 3, 211.
15. Nakamura, A. J. Organomet. Chem. 1990, 400, 35.
16. Geiger, W. E.; Rieger, P. H.; Corbato, C.; Edwin, J.; Fonseca, E.; Lane, G. A.; Mevs, J. M. J. Am.Chem. Soc. 1993, 115, 2314.
17. Moseley, K.; Kang, J. W.; Maitlis, P. M. J. Chem. Soc. D 1969, 1155.
18. Moseley, K.; Maitlis, P. M. J. Chem. Soc. D 1969, 1156.
19. Arthurs, M.; Sloan, M.; Drew, M. G. B.; Nelson, S. M. J. Chem. Soc., Dalton Trans. 1975, 1794.
20. Mathews, F. S.; Lipscomb, W. N. J. Am.Chem. Soc. 1958, 80, 4745.
21. Manuel, T. A.; Stone, F. G. A. Proc. Chem. Soc. 1959, 90.
22. Johnson, B. F. G.; Lewis, J.; White, D. A. J . Chem. Soc. A 1970, 1738.
23. Schrauzer, G. N.; Thyret, H. Z. Chem. Ber. 1963, 1755.
24. Hoberg, H.; Froehlich, C. Angew. Chem. Int. Ed. Engl. 1980, 19, 145.
25. Bennett, M. A.; Matheson, T. W.; Robertson, G. B.; Smith, A. K.; Tucker, P. A. Inorg. Chem. 1980, 19, 1014.
26. Carbonaro, A.; Greco, A.; Dall'Asta, G. Tetrahedron Lett. 1967, 8, 2037.
27. Carbonaro, A.; Greco, A. J. Organomet. Chem. 1970, 25, 477.
28. Geiger, W. E.; Gennett, T.; Grzeszczuk, M.; Lane, G. A.; Moraczewski, J.; Salzer, A.; Smith, D. E. J. Am.Chem. Soc. 1986, 108, 7454.
29. Petasis, N. A.; Patane, M. A. Tetrahedron 1992, 48, 5757.
30. Liu, C.; Tamm, M.; Nötzel, M. W.; Rauch, K.; de Meijere, A.; Schilling, J. K.; Lakdawala, A.; Snyder, J. P.; Bane, S. L.; Shanker, N.; Ravindra, R.; Kingston, D. G. I. Eur. J. Org. Chem. 2005, 2005, 3962.
31. Wender, P. A.; Badham, N. F.; Conway, S. P.; Floreancig, P. E.; Glass, T. E.; Gränicher, C.; Houze, J. B.; Jänichen, J.; Lee, D.; Marquess, D. G.; McGrane, P. L.; Meng, W.; Mucciaro, T. P.; Mühlebach, M.; Natchus, M. G.; Paulsen, H.; Rawlins, D. B.; Satkofsky, J.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E.; Tomooka, K. J. Am.Chem. Soc. 1997, 119, 2755.
32. Lange, G.; Reimelt, O.; Jessen, L.; Heck, J. Eur. J. Inorg. Chem. 2000, 2000, 1941.
33. Reimelt, O.; Heck, J. Organometallics 2003, 22, 2097.
34. Schörshusen, S.; Heck, J. Organometallics 2007, 26, 5386.
35. Merola, J. S.; Kacmarcik, R. T. Organometallics 1989, 8, 778.
36. Anderson, G. K. Organometallics 1986, 5, 1903.
37. Abad, J.-A.; Förtsch, W.; López-Sáez, M.-J.; Jones, P. G. Organometallics 2004, 23, 4414.
38. Cotton, F. A.; Jordan, G. T.; Murillo, C. A.; Su, J. Polyhedron 1997, 16, 1831.
39. C. Peters, J.; L. Odom, A.; C. Cummins, C. Chem. Commun. 1997, 1995.
40. Lü, J.-M.; Rosokha, S. V.; Lindeman, S. V.; Neretin, I. S.; Kochi, J. K. J. Am.Chem. Soc. 2005, 127, 1797.
41. Dong, W.; Yang, R.; Yu, K. Acta Crystallogr., Sect. C 1998, 54, 1416.
42. Cotton, F. A.; Daniels, L. M.; Hillard, E. A.; Murillo, C. A. Inorg. Chem. 2002, 41, 2466.
43. Schneider, J. J.; Denninger, U.; Heinemann, O.; Krüger, C. Angew. Chem. Int. Ed. Engl. 1995, 34, 592.
44. 張凱傑,國立清華大學碩士學位論文,2009。
45. Beevor, R. G.; Frith, S. A.; Spencer, J. L. J. Organomet. Chem. 1981, 221, C25.
46. Fontaine, P. P.; Yonke, B. L.; Zavalij, P. Y.; Sita, L. R. J. Am.Chem. Soc. 2010, 132, 12273.
47. 林亨菕,國立清華大學碩士學位論文,2011。
48. Robbins, J. L.; Edelstein, N.; Spencer, B.; Smart, J. C. J. Am.Chem. Soc. 1982, 104, 1882.
49. Kölle, U.; Fuss, B.; Khouzami, F.; Gersdorf, J. J. Organomet. Chem. 1985, 290, 77.
50. Buchin, B.; Gemel, C.; Cadenbach, T.; Schmid, R.; Fischer, R. A. Angew. Chem. Int. Ed. 2006, 45, 1074.
51. Bonrath, W.; Pörschke, K. R.; Michaelis, S. Angew. Chem. Int. Ed. Engl. 1990, 29, 298.
52. Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am.Chem. Soc. 2008, 130, 8923.
53. 林冠銘,國立清華大學碩士學位論文,2008。
54. 林怡慶,國立清華大學碩士學位論文,2011。
55. Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M. Chem. Commun. 2008, 205.
56. Tsai, Y.-C.; Wang, P.-Y.; Chen, S.-A.; Chen, J.-M. J. Am.Chem. Soc. 2007, 129, 8066.
57. Monillas, W. H.; Yap, G. P. A.; MacAdams, L. A.; Theopold, K. H. J. Am.Chem. Soc. 2007, 129, 8090.
58. Evans, D. F. J. Chem. Soc. 1959, 2003.
59. Podall, H.; Foster, W. E.; Giraitis, A. P. J. Org. Chem. 1958, 23, 82.