研究生: |
陳建銘 Chen, Chien Ming |
---|---|
論文名稱: |
模擬最佳化應用於半導體後段封裝廠混合流線型排程問題之研究 Simulation Optimization for Hybrid Flow Shop Scheduling Problem in Semiconductor Back-end Assembly |
指導教授: |
林則孟
Lin, James T. |
口試委員: |
楊大和
姚銘忠 張國浩 陳盈彥 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 107 |
中文關鍵詞: | 半導體後段封裝 、混合流線型排程問題 、拆批與集批 、模擬資源最佳化配置 、模擬最佳化 |
外文關鍵詞: | semiconductor back-end assembly, hybrid flow shop scheduling, lot split and merge, optimal computing budget allocation, simulation optimization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為半導體後段封裝廠的混合流線型排程問題,其複雜度源自於需求的訂單特性與供給的生產環境特性。每一張訂單有其各自特定的產品型號、需求數量及來到時間;而在生產環境特性上,其為多產線、多工作站、多個等效與非等效平行機群的有限產能環境,其中黏晶、銲線與模壓為其考慮的關鍵加工站別。此三站的加工特性各有不同,因此衍生出訂單拆批與集批的生產特性,其中黏晶為整批進站生產,依拆批規則,達一定數量後,即拆批到銲線機台進行平行生產,以加快訂單生產,後再依併批規則,於模壓站進行加工,直到該訂單對應的所有子批完工,該訂單才能判定完工。生產過程必須吻合相關的加工限制,包括僅能在合格產線與機型加工、相同訂單下的子批僅限在相同產線與機型加工等特性,而各產品在不同機型上的加工時間不同,且具有隨機性,當機台上的加工產品型號改變時,則必須進行機台整備,其整備時間則依發生的站別而有所不同。
基於問題的複雜度,本研究應用模擬最佳化方法,透過較佳的產線、機型指派決策,目標為最小化的訂單加工時間。此方法整合系統模擬模式、啟發式演算法與最佳模擬資源配置技術,建構出模擬最佳化的應用架構與步驟。其中透過系統模擬,用以評估不同可行方案的績效,透過模擬資源最佳化配置技術,使其有限的模擬資源能有效分配於需要模擬的方案,減少隨機環境下的模擬次數,仍能辨別方案優劣,以便結合啟發式演算法如基因演算法或粒子演算法,使其在模擬最佳化的迭代搜尋運作中,能夠更快速地獲致較佳的方案,並透過情境分析探討不同需求水準、產品組合、或批量大小與加工時間的關係,顯現此模擬最佳化方法的可行性。根據前述的情境與應用,進一步的將批量大小設為決策變數,並比較不同啟發式演算法的績效、迭代收斂行為,結果顯示訂單加工時間持續改善且優於現行的實務法則,其驗證結果可供未來研究方向或實務應用之架構参考。
This study presents a simulation optimization approach for a hybrid flow shop scheduling problem in an actual semiconductor back-end assembly facility. The complexity of the problem is determined on the basis of demand and supply. Demand varies with orders, which are in turn characterized by different quantities, product types, and release times. Supply varies with the number of flexible manufacturing routes; however, this factor is constrained in a multi-line, multi-stage production system that utilizes specific types and numbers of both identical and unrelated parallel machines. This study addresses a non-deterministic polynomial-time-hard and stochastic discrete optimization problem that is subject to numerous constraints, such as product—machine dedication and lot split and merge due to charateristics of production process. Die bond, wire bond and mold were considered as bottlenecks. Due to unbalance throughput during these three stage, there is a split behavior at die bond stage, then to wire bond for reducing flow time by parallel processing; thre is a batch behavior before mold, then batch processing at mold stage due to economic scale. In the latter, jobs that belong to the same order must be processed by the same machine type at each stage under stochastic processing and sequence-dependent setup times. A simulation optimization approach is developed in view of the complex and stochastic nature of the problem. The approach includes a simulation model for performance evaluation, an optimization strategy that applies either a genetic algorithm or particle swarm optimization, and a technique for acceleration via optimal computing budget allocation. Flow time is improved because of optimal assignment in terms of production line and machine type. Scenarios depicting the different levels of demand, product mix, and lot-split size are analyzed to reveal the advantages of the proposed simulation approach. Furthermore, lot split-size (limited 2 options) is included as a decision variable and is coupled with different meta-heuristics to enhance solution quality and practical heuristics. Future research directions are then recommended on the basis of the computational results.
Allaoui, H., Artiba, A. (2004) Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints, Computers & Industrial Engineering, 47, 431-450.
Almeder, C., Hartl, R. F. (2013) A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer, International Journal of Production Economics,145(1), 88-95.
Ambühl, C., Mastrolilli, M. (2005) On-line scheduling to minimize max flow time: an optimal preemptive algorithm, Operations Research Letters, 33(6), 597-602.
Balin, S. (2011) Parallel machine scheduling with fuzzy processing times using a robust genetic algorithm and simulation, Information Sciences, 181, 3551-3569.
Behera, D. K. (2012) Complexity on parallel machine scheduling: A review, In Emerging Trends in Science, Engineering and Technology, 373-381, Springer India.
Branke, J., Chick, S. E., Schmidt C. (2007) Selecting a selection procedure, Management Science, 53, 1916-1932.
Branke, J., Mattfeld, D. C. (2005) Anticipation and flexibility in dynamic scheduling, International Journal of Production Research, 43(15), 3103-3129.
Carson Y., Maria, A. Simulation optimization: Methods and Applications, in: Proceedings of the 1997 Winter Simulation Conference, 1997, pp.118-122.
Chaari, T., Chaabane, S., Loukil, T., Trentesaux, D. (2011) A genetic algorithm for robust hybrid flow shop scheduling, International Journal of Computer Integrated Manufacturing, 24(9), 821-833.
Chan, F. T., Choy, K. L. (2011) A genetic algorithm-based scheduler for multiproduct parallel machine sheet metal job shop, Expert Systems with Applications, 38(7), 8703-8715.
Chaudhry, I. A., Drake, P. R. (2009) Minimizing total tardiness for the machine scheduling and worker assignment problems in identical parallel machines using genetic algorithms, International Journal of Advanced Manufacturing Technology, 42, 581-594.
Chen, C. H. and Lee, L. H. (2011) Stochastic simulation optimization – an optimal computing budget allocation, World Scientific Publishing Co. Ptd. Ltd. Singapore.
Chen, C. H., Donohue, K., Yucesan, E., Lin, J. (2003) Optimal computing budget allocation for Monte Carlo simulation with application to product design, Simulation Modelling Practice and Theory, 11, 57–74.
Chen, C. H., Lin, J., Yucesan, E., Chick, S. E. (2000) Simulation budget allocation for further enhancing the efficiency of ordinal optimization, Discrete Event Dynamic Systems, 10, 251–270.
Chen, J. C., Su, L., Sun, C., Hsu, M. (2010) Infinite capacity planning for IC packaging plants, International Journal of Production Research, 48(19), 5729-5748.
Chen, Y. Y., Cheng, C. Y.,Wang, L. T., Chen, T. L. (2013) A hybrid approach based on the variable neighborhood search and particle swarm optimization for parallel machine scheduling problems—A case study for solar cell industry, International Journal of Production Economics, 141, 66-78.
Cheng, C. Y., Chen, T. L., Wang, L. T., Chen, Y. Y. (2013) A genetic algorithm for the multi-stage and parallel machine scheduling problem with job splitting – A case study for the solar cell industry, International Journal of Production Research, 51(16), 4755-4777.
Cheng, M., Mukherjee, N. J., Sarin S. C. (2013b) A review of lot streaming, International Journal of Production Research, 51(23-24), 7023-7045.
Chua, T. J., Liu, M., Wang, F., Yan, W., Cai, T. (2007) An intelligent multi-constraint finite capacity-based lot release system for semiconductor backend assembly environment, Robotics and Computer-Integrated Manufacturing, 23, 326-338.
Chung, Y. L. (2015) Combine Dispatching Rule with Lot Streaming to Solve Scheduling Problem for Semiconductor Back-end Factory (in Chinese), Master’s Thesis, National Tsing Hua University, Taiwan.
Defersha, F. M. (2011). A comprehensive mathematical model for hybrid flexible flowshop lot streaming problem. International Journal of Industrial Engineering Computations, 2(2), 283-294.
Eberhart, R., Kennedy, J. A new optimizer using particle swarm theory, Micro Machine and Human Science, MHS'95., Proceedings of the Sixth International Symposium on. IEEE, 1995, pp.39-43.
Fisher, R. A. (1935). The Design of Experiments. Oliver and Boyd, Edinburgh.
Frantzén, M., Ng, A. H., & Moore, P. (2011) A simulation-based scheduling system for real-time optimization and decision making support, Robotics and Computer-Integrated Manufacturing, 27(4), 696-705.
French, S. Sequencing and Scheduling: An introduction to the mathematics of the job-shop, Chichester: Ellis Horwood, 1982.
Fu, M. C. (2002) Optimization for simulation: theory vs. practice, INFORMS Journal on Computing, 14(3), 192-215.
Fu, M. C., Glover, F. W., & April, J. Simulation optimization: a review, new developments, and applications. In Proceedings of the 37th conference on the Winter Simulation, 2005, pp. 83-95
Fu, M., Askin, R., Fowler, J., Haghnevis, M., Keng, N., Pettinato, J. S., Zhang, M. (2011) Batch production scheduling for semiconductor back-end operations, IEEE Transactions on Semiconductor Manufacturing, 24(2), 249-260.
Garey, M., Johnson, D. Computers and intractability: A guide to the theory of NP-completeness, W.H. Freeman, New York, 1979.
Gravetter, F., Forzano, L. A. , Research methods for the behavioral sciences, Cengage Learning, 2011
Guo, R. S., Chiang, D. M., Pai, F.Y. (2007) A WIP-based exception-management model for integrated circuit back-end production processes, International Journal of Advanced Manufacturing Technology, 33, 1263-1274
Henderson, S. G., Nelson, B. L. (2006) stochastic computer simulation. Handbooks in Operations Research and Management Science, 13, 1-18.
Holland, J. H. (1975) Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI.
Huang, C. Y. (2014) Lot Steaming and Batch Processor in Hybrid Flow Shop Scheduling Problem – A Case for Semiconductor Assembly Factory (in Chinese), Master’s Thesis, National Tsing Hua University, Taiwan.
Huang, C., Chang, K., Lin, J. T. (2012) Optimal vehicle allocation for an automated materials handling system using simulation optimization, International Journal of Production Research, 50(20), 5734-5746.
Huang, S. M. (2012) Short term Order and Machine Assignment Problem for IC-Packaging Factory (in Chinese), Master’s Thesis, National Tsing Hua University, Taiwan.
Hwang, B., Chang, S., Yu, H., Chang, C. (2008) Pioneering e-supply chain integration in semiconductor industry: a case study, International Journal of Advanced Manufacturing Technology, 36, 825-832.
Jarugumilli, S., Keng N., Dejong, C., Askin, R., Fowler, J. Framework for execution level capacity allocation decisions for assembly – test facility using integrated optimization – simulation models, in: Proceedings of the 2008 Winter Simulation Conference, 2008, pp.2292-2297.
Johnson, D. J. (2003) A framework for reducing manufacturing throughput time, Journal of Manufacturing Systems, 22(4), 283-298.
Jones, D. F., Mirrazavi, S. K., Tamiz, M. (2002). Multi-objective meta-heuristics: an over view of the current state-of-the-art, European Journal of Operational Research, 137(1), 1–9.
Klemmt, A., Weigert, G. An optimization approach for parallel machine problems with dedication constraints: Combining simulation and capacity planning. In: Proceedings of the Winter Simulation Conference. Winter Simulation Conference, 2011, pp. 1986-1998.
Kravchenko, S. A., Werner, F. (2001) A heuristic algorithm for minimizing mean flow time with unit setups, Information Processing Letters, 79(6), 291-296.
Kumar Manjeshwar, P., Damodaran, P., & Srihari, K. (2009) Minimizing makespan in a flow shop with two batch-processing machines using simulated annealing, Robotics and Computer-Integrated Manufacturing, 25(3), 667-679.
Law, A. M. (2007) Simulation Modeling and Analysis, McGraw-Hill, Boston.
Lee, L. H., Chen, C. H., Chew, E. P., Li, J., Pujowidianto, N. A., Zhang, S. (2010) A review of optimal computing budget allocation algorithms for simulation optimization problem, International Journal of Operations Research, 7(2), 19-31.
Lee, L. H., Chew, E. P., Frazier, P. I., Jia, Q. S., Chen, C. H. (2013) Advances in simulation optimization and its applications, IIE Transactions, 45(7), 683-684.
Lee, L. H., Chew, E. P., Teng, S., Chen, Y. (2008) Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem, European Journal of Operational Research, 189(2), 476-491.
Li, J., Sava, A., Xie, X. (2009) Simulation-based discrete optimization of stochastic discrete event systems subject to non closed-form constraints, IEEE Transactions on Automatic Control, 54(12), 2900-2904.
Lin, J. T., Chen, C. M. (2015). Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing. Simulation Modelling Practice and Theory, 51, 100-114.
Lin, J. T., Chen, C. M., Chiu, C. C. and Fang, H. Y. (2013) Simulation optimization with PSO and OCBA for semiconductor back-end assembly, Journal of Industrial and Production Engineering, 30(7), pp. 452-460.
Lin, J. T., Huang, C. J. (2014). A simulation-based optimization approach for a semiconductor photobay with automated material handling system, Simulation Modelling Practice and Theory, 46, 76-100.
Lin, J. T., Huang, C. Y., Chen, C. M., Chiu, C. C. and Chung, Y. L. Simulation optimization for lot steaming and batch processor in hybrid flow shop scheduling problem (in Chinese), CIIE'14., Proceedings of Chinese Institute of Industrial Engineers, 2014.
Lin, R. C., Mustafa, Y., Pasupathy, K. S. (2013) Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services, Omega, 41 (5), 881-892.
Liu, W., Chua, T. J., Cai, T., Wang, F. Y. (2005) Practical lot release methodology for semiconductor back-end manufacturing, Production Planning and Control, 16(3), 297-308.
Marimuthu, S., Ponnambalam, S. G., Jawahar, N. (2008) Evolutionary algorithms for scheduling m-machine flow shop with lot streaming, Robotics and Computer-Integrated Manufacturing, 24(1), 125-139.
Martin, C. H. (2009) A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming, Omega, 37(1), 126-137
Mathirajan, M., Sivakumar, A. I (2006) A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor, International Journal of Advanced Manufacturing Technology, 29(9-10), 990-1001.
Mirsanei, H. S., Karimi, B., & Jolai, F. (2009). Flow shop scheduling with two batch processing machines and nonidentical job sizes, International Journal of Advanced Manufacturing Technology, 45(5-6), 553-572.
Mohammadi, M., Fatemi, Ghomi, S. M. T. (2011) Genetic algorithm-based heuristic for capacitated lotsizing problem in flow shops with sequence-dependent setups, Expert Systems with Applications, 38(6), 7201-7207.
Mönch L., Fowler, J. W., Dauzere-Peres, S., Mason, S. J., Rose, O. (2011) A survey of problem, solution, and future challenges in scheduling semiconductor manufacturing operations, Journal of Scheduling, 14, 583-599.
Mortezaei, N., Zulkifli, N. (2013). Integration of lot sizing and flow shop scheduling with lot streaming. Journal of Applied Mathematics, 2013.
Nait Tahar, D., Yalaoui, F., Chu, C., Amodeo, L. (2006) A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times, International Journal of Production Economics, 99(1), 63-73.
Pan, Q. K., Ruiz, R. (2012) An estimation of distribution algorithm for lot-streaming flow shop problems with setup times, Omega, 40(2), 166-180.
Pearn, W. L., Chung S. H., Lai C. M. (2007) Scheduling integrated circuit assembly operations on die bonder, IEEE Transactions on Electronics Packaging Manufacturing, 30(2), 97-105.
Perkgoz, C., Azaron, A., Katagiri, H., Kato, K., Sakawa, M. (2007) A multi-objective flow time control problem in multi-stage assembly systems using genetic algorithms, European Journal of Operational Research, 180, 292-308.
Pickardt, C. W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B. (2013) Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems, International Journal of Production Economics, 145(1), 67-77.
Pinedo, M. (1995) Scheduling: theory, algorithms, and systems, Prentice-Hall, Englewood Cliffs, NJ.
Potoradi, J., Boon, O. S., Mason, S. J. Using simulation-based scheduling to maximize demand fulfillment in a semiconductor assembly facility, in: Proceedings of 2002 Winter Simulation Conference, 2002, pp.1857-1861.
Potts, C. N., Kovalyov, M. Y. (2000) Scheduling with batching: A review, European Journal of Operational Research, 20(2), 228-249.
Quadt, D., Kuhn, H., Production planning in semiconductor assembly. In: Proceedings of the Fourth Aegean International Conference on Analysis of Manufacturing Systems, 2003, pp. 181-189.
Rastogi, A. P., Flower, J. W., Carlyle, W. M., Araz, O. M., Maltz, A. Buke, B. (2011) Supply network capacity planning for semiconductor manufacturing with uncertain demand and correlation in demand considerations, International Journal of Production Economics, 134, 322-332.
Riane, F., Artiba, A., Elmaghraby, S. E. (2002) Sequencing a Hybrid Two-stage Flowshop with Dedicated Machines, International Journal of Production Research, 40 (17), 4353–4380.
Ribas, I., Leisten, R., Framinan, J. M. (2010) Review and classification of hybrid flow shop scheduling problems from production system and a solutions procedure perspective, Computers & Operations Research, 37, 1439-1454.
Ruiz, R., Şerifoğlu, F. S., Urlings, T. (2008) Modeling realistic hybrid flexible flowshop scheduling problems, Computers & Operations Research, 35(4), 1151-1175.
Ruiz, R., Vázquez-Rodríguez, J. A. (2010) The hybrid flow shop scheduling problem, European Journal of Operational Research, 205(1), 1-18.
Schmidt, C., Branke, J., Chick, S. E. (2006) In Applications of Evolutionary Computing, Integrating techniques from statistical ranking into evolutionary algorithms (Springer Berlin Heidelberg), pp. 752-763
Shirodkar, S., Kempf, K. (2006) Supply chain collaboration through shared capacity models, Interface, 36(5), 420-432.
Sivakumar, A. I. (2001) Multiobjective dynamic scheduling using discrete event simulation, International Journal Computer Integrated Manufacturing, 14(2), 154-167.
Sivakumar, A. I. Chong, C. S. (2001) A simulation based analysis of flow time distribution, and throughput in semiconductor backend manufacturing, Computers in Industry, 45, 59-78.
Sivakumar, A. I., Gupta, A. K. (2006) Online multiobjective Pareto optimal dynamic scheduling of semiconductor back-end using conjunctive simulated scheduling, IEEE Transaction on Electronic Packaging Manufacturing, 29(2), 99-109.
Suresh, V. and Chaudhuri, D. (1993) Dynamic scheduling—a survey of research, International Journal of Production Economics, 32(1), 53-63.
Sweat, S., Niu, S., Zhang, M. T., Zhang, Z., Zhang, L. Multi-factory capacity planning in semiconductor assembly and test manufacturing with multiple-chip products, IEEE International conference on Automation Science and Engineering, 2006, pp.247-252.
Tang, Y., Zhou, M., Qiu, R. G. (2003) Virtual production line design for back-end semiconductor manufacturing system, IEEE Transactions on Semiconductor Manufacturing, 16(3), 543-550.
Tekin, E., Sabuncuoglu, I. (2004) Simulation optimization: A comprehensive review on theory and applications, IIE Transactions, 36, 1067-1081.
Tseng, C. T., Liao, C. J. (2008) A discrete particle swarm optimization for lot-streaming flowshop scheduling problem, European Journal of Operational Research, 19(2), 360-373.
Vallada, E., Ruiz, R. (2011) A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times, European Journal of Operational Research, 211(3), 612-622.
Ventura, J. A., Yoon, S. H. (2013) A new genetic algorithm for lot-streaming flow shop scheduling with limited capacity buffers, Journal of Intelligent Manufacturing, 24(6), 1185-1196.
Walker, J. (2014) Forecast Analysis: Semiconductor Assembly and Test Services, Worldwide, 4Q13 Update, Gartner.
Wang, F. Y., Chua, T. J., Liu, W., Cai, T. An integrated modeling framework for capacity planning and production scheduling, in: International Conference on Control and Automation, 2005, pp.1137-1162.
Weigert, D., Klemmt, A., Horn, S. (2009) Design and validation of heuristic algorithms for simulation-based scheduling of a semiconductor backend facility, International Journal of Production Research, 47(8), 2165-2184.
Yang, T. (2009) An evolutionary simulation–optimization approach in solving parallel-machine scheduling problems – A case study, Computers & Industrial Engineering, 56, 1126-1136.
Yang, T., Kuo, Y., Cho, C. (2007) A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem, European Journal of Operational Research, 176, 1859–1873.
Yang, T., Shen, Y. A. (2012) Heuristic algorithms for a practical-size dynamic parallel-machine scheduling problem: integrated-circuit wire bonding, Production Planning & Control, 23(1), 67-78.
Ye, T. (2012) Analysis on multi-stage lot streaming: The effect of transfer, Computers & Industrial Engineering, 62(4), 1046-1054.
Yin, X. F., Chun, T. J., Wang, F. Y., Lin, M. W., Cai, T., Yang, W., Chong, C., Zhu, J., Lam, M. (2004) A rule base heuristic finite capacity scheduling system for semiconductor backend assembly, International Journal of Computer Integrated Manufacturing, 17(8), 733-749.
Zhang, M. T., Niu, S., Deng, S., Zhang, Z., Li, Q., Zheng, L. (2007) Hierarchical capacity planning with reconfigurable kits in global semiconductor assembly and test manufacturing, IEEE Transactions on Automation Science and Engineering, 4(4), 543-552.