研究生: |
蘇柏榮 Bor-Rung Su |
---|---|
論文名稱: |
二氧化鈦薄膜之電阻轉換特性研究 |
指導教授: |
吳振名
Jenn-Ming Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 149 |
中文關鍵詞: | 二氧化鈦 、電阻轉換 、電阻式記憶體 |
外文關鍵詞: | TiO2, RRAM, ReRAM, switching |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於電阻式記憶體擁有高速率、低耗能、結構簡單化、高操作週
期、並且擁有非破壞讀取及非揮發性等多項優勢,所以除了在特性上
的突破與改進,在生產成本上亦有相當大的優勢,因此受到學術界及
業界等眾多矚目,有機會成為下個世代記憶體的領航者。然而由於目
前處於發展初期,對於電阻轉換效應的機制眾多紛紜,尚無定論,並
且材料特性掌握不足,因此在現階段的研究為發展的關鍵。
本論文主要探討二氧化鈦(TiO2)材料在單極電阻轉換上的現
象。在室溫下以濺鍍方式鍍製薄膜,並以鉑(Pt)作為上下電極,形
成Pt/TiO2/Pt 的結構。隨後改變退火溫度,改變其結晶性及原始阻態
電阻,進而探討其差異性。此外除了一般常見的電流-電壓測量(I
-V sweeping),本論文亦引入電流-時間(time evolution)在不同電
壓下的變化,以及不同阻態下的介電量測,以探討電阻轉換行為,進
一步證實燈絲理論(filament theory)的可能性。
由於TiO2 材料並無電滯現象,因此本實驗試圖以缺氧方式,在
通入純氬氣氛下,以TiO2 作為靶材,鍍製缺氧量較高的TiOx 薄膜,
形成Pt/TiOx/Pt 結構。結果發現確實能夠提升其電滯效應,並且電滯
效應的原因可能主要來自於薄膜內部的貢獻。
[1] S. T. Hsu, W. W. Zhuang, T. K. Li et al., "RRAM switching
mechanism," 2005 Non-Volatile Memory Technology Symposium,
Proceedings, 121-124 (2005).
[2] W. W. Zhuang, W. Pan, B. D. Ulrich et al., "Novell Colossal
Magnetoresistive thin film nonvolatile resistance random access
memory (RRAM)," International Electron Devices 2002 Meeting,
Technical Digest, 193-196 (2002).
[3] 雷宇宏, "新興存儲器之技術動態探析."
[4] V. V. Yakovlev, G. Scarel, C. R. Aita et al., "Short-range order in
ultrathin film titanium dioxide studied by Raman spectroscopy,"
Applied Physics Letters 76 (9), 1107-1109 (2000).
[5] 吳朗, 電子陶瓷/介電. (全欣資訊, 台北巿, 1994), pp.139-142.
[6] H. Shima, F. Takano, H. Muramatsu et al., "Control of resistance
switching voltages in rectifying Pt/TiOx/Pt trilayer," Applied
Physics Letters 92 (2008).
[7] 葉林秀, 李佳謀, 徐明豐 等, "磁阻式隨機存取記憶體技術的發
展—現在與未來," 物理雙月刊 廿六卷四期 (2004).
[8] 簡昭欣, 呂正傑, 陳志遠 等, "先進記憶體簡介," 尖端科技 創
刊號.
[9] A. Sawa, T. Fujii, M. Kawasaki et al., "Hysteretic current-voltage
characteristics and resistance switching at a rectifying
146
Ti/Pr0.7Ca0.3MnO3 interface," Applied Physics Letters 85 (18),
4073-4075 (2004).
[10] H. Sim, D. J. Seong, M. Chang et al., "Excellent Resistance
Switching Characteristics of Pt/Single-crystal Nb-Doped SrTiO3,"
IEEE (2006).
[11] B. P. Andreasson, M. Janousch, U. Staub et al., "Resistive
switching in Cr-doped SrTiO3: An X-ray absorption spectroscopy
study," Materials Science and Engineering B-Solid State Materials
for Advanced Technology 144 (1-3), 60-63 (2007).
[12] C. Y. Liu, P. H. Wu, A. Wang et al., "Bistable resistive switching of
a sputter-deposited Cr-doped SrZrO3 memory film," Ieee Electron
Device Letters 26 (6), 351-353 (2005).
[13] C. Y. Liu, C. C. Chuang, J. S. Chen et al., "Memory effect of
sol-gel derived V-doped SrZrO3 thin films," Thin Solid Films 494
(1-2), 287-290 (2006).
[14] R. Oligschlaeger, R. Waser, R. Meyer et al., "Resistive switching
and data reliability of epitaxial (Ba,Sr)TiO3 thin films," Applied
Physics Letters 88 (2006).
[15] D. Hsu, J. G. Lin, and W. F. Wu, "Resistive switching effects in
Nd0.7Ca0.3MnO3 manganite," Journal of Magnetism and
Magnetic Materials 310 (2), 978-980 (2007).
[16] D. S. Shang, L. D. Chen, Q. Wang et al., "Asymmetric fatigue and
its endurance improvement in resistance switching of
Ag-La0.7Ca0.3MnO3-Pt heterostructures," Journal of Physics
D-Applied Physics 40 (17), 5373-5376 (2007).
[17] C. C. Lin, B. C. Tu, C. H. Lin et al., "Resistive switching
mechanisms of V-doped SrZrO3 memory films," Ieee Electron
Device Letters 27 (9), 725-727 (2006).
147
[18] C. C. Lin, B. C. Tu, J. S. Yu et al., "Resistive switching properties
of SrZrO3-based memory films," Japanese Journal of Applied
Physics Part 1-Regular Papers Brief Communications & Review
Papers 46 (4B), 2153-2156 (2007).
[19] C. Rohde, B. J. Choi, D. S. Jeong et al., "Identification of a
determining parameter for resistive switching of TiO2 thin films,"
Applied Physics Letters 86 (26) (2005).
[20] S. Seo, M. J. Lee, D. H. Seo et al., "Reproducible resistance
switching in polycrystalline NiO films," Applied Physics Letters 85
(23), 5655-5657 (2004).
[21] S. Kim, I. Byun, I. Hwang et al., "Giant and stable conductivity
switching behaviors in ZrO2 films deposited by pulsed laser
depositions," Japanese Journal of Applied Physics Part 2-Letters &
Express Letters 44 (8-11), L345-L347 (2005).
[22] R. Dong, D. S. Lee, W. F. Xiang et al., "Reproducible hysteresis
and resistive switching in metal-CuxO-metal heterostructures,"
Applied Physics Letters 90 (4) (2007).
[23] D. Lee, D. J. Seong, I. Jo et al., "Resistance switching of copper
doped MoOx films for nonvolatile memory applications," Applied
Physics Letters 90 (12) (2007).
[24] C. Y. Lin, C. Y. Wu, C. Hu et al., "Bistable resistive switching in
Al2O3 memory thin films," Journal of the Electrochemical Society
154 (9), G189-G192 (2007).
[25] K. M. Kim, B. J. Choi, B. W. Koo et al., "Resistive switching in
Pt/Al2O3/TiO2/Ru stacked structures," Electrochemical and Solid
State Letters 9 (12), G343-G346 (2006).
[26] D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of bipolar
and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack,"
Electrochemical and Solid State Letters 10 (8), G51-G53 (2007).
148
[27] Lee-Eun Yu, Sungho Kim, Min-Ki Ryu et al., "Structure Effects on
Resistive Switching of Al/TiOx/Al Devices for RRAM
Applications," IEEE ELECTRON DEVICE LETTERS 29 (4),
331-333 (2008).
[28] S. Karthauser, B. Lussem, M. Weides et al., "Resistive switching of
rose bengal devices: A molecular effect?," Journal of Applied
Physics 100 (9) (2006).
[29] B. J. Choi, D. S. Jeong, S. K. Kim et al., "Resistive switching
mechanism of TiO2 thin films grown by atomic-layer deposition,"
Journal of Applied Physics 98 (3) (2005).
[30] R. Waser and M. Aono, "Nanoionics-based resistive switching
memories," Nature Materials 6, 833-840 (2007).
[31] "Agilent-4155C handbook-Expand Your Parametric Test
Horizons."
[32] H. Y. Lee, P. S. Chen, C. C. Wang et al., "Low-power switching of
nonvolatile resistive memory using hafnium oxide," Japanese
Journal of Applied Physics Part 1-Regular Papers Brief
Communications & Review Papers 46 (4B), 2175-2179 (2007).
[33] A. Baikalov, Y. Q. Wang, B. Shen et al., "Field-driven hysteretic
and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3
interface," Applied Physics Letters 83 (5), 957-959 (2003).
[34] R. Dong, Q. Wang, L. Chen et al., "Resistance switching driven by
polarity and voltage of electric pulse in AgLa0.7Ca0.3MnO3Pt
sandwiches," Applied Physics a-Materials Science & Processing 81,
265-268 (2005).
[35] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, "Nonvolatile
memory with multilevel switching: a basic model," Physical
Review Letter 92 (17), 178302 (2004).
149
[36] N.A. Chowdhury, G. Bersuker, C. Young et al., "Breakdown
characteristics of nFETs in inversion with metal/HfO2 gate stacks,"
Microelectronic Engineering 85, 27-35 (2008).
[37] N. Hwang, T. L. Tan, and C. L. Gan, "Distinction of Intrinsic and
Extrinsic Breakdown Failure Modes of Cu/Low-k Interconnects,"
Proceedings of ESSDERC, Grenoble, France,, 273-276 (2005).
[38] Y. Sato, K. Kinoshita, M. Aoki et al., "Consideration of switching
mechanism of binary metal oxide resistive junctions using a
thermal reaction model," Applied Physics Letters 90 (3) (2007).
[39] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, "Growth model
for filamentary streamers in an ambient field," IEEE Transactions
on Dielectrics and Electrical Insulation 10 (1), 73-79 (2003).
[40] S. Seo, M. J. Lee, D. H. Seo et al., "Conductivity switching
characteristics and reset currents in NiO films," Applied Physics
Letters 86 (9) (2005).
[41] S. R. Lee, K. Char, D. C. Kim et al., "Resistive memory switching
in epitaxially grown NiO," Applied Physics Letters 91 (20) (2007).
[42] P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen et al., "Ferroelectric
Schottky diode," Physical Review Letters 73 (15), 2107-2110
(1994).
[43] T. Fujii, M. Kawasaki, A. Sawa et al., "Hysteretic current-voltage
characteristics and resistance switching at an epitaxial oxide
Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Applied Physics
Letters 86 (1) (2005).
[44] Ming-Daou Lee, Chia-Hua Ho, Chi-Kuen Lo et al., "Effect
of Oxygen Concentration on Characteristics of NiOx-Based
Resistance Random Access Memory," IEEE Transactions On
Magnetics 43 (2), 939-942 (2007).