簡易檢索 / 詳目顯示

研究生: 蘇柏榮
Bor-Rung Su
論文名稱: 二氧化鈦薄膜之電阻轉換特性研究
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 149
中文關鍵詞: 二氧化鈦電阻轉換電阻式記憶體
外文關鍵詞: TiO2, RRAM, ReRAM, switching
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電阻式記憶體擁有高速率、低耗能、結構簡單化、高操作週
    期、並且擁有非破壞讀取及非揮發性等多項優勢,所以除了在特性上
    的突破與改進,在生產成本上亦有相當大的優勢,因此受到學術界及
    業界等眾多矚目,有機會成為下個世代記憶體的領航者。然而由於目
    前處於發展初期,對於電阻轉換效應的機制眾多紛紜,尚無定論,並
    且材料特性掌握不足,因此在現階段的研究為發展的關鍵。
    本論文主要探討二氧化鈦(TiO2)材料在單極電阻轉換上的現
    象。在室溫下以濺鍍方式鍍製薄膜,並以鉑(Pt)作為上下電極,形
    成Pt/TiO2/Pt 的結構。隨後改變退火溫度,改變其結晶性及原始阻態
    電阻,進而探討其差異性。此外除了一般常見的電流-電壓測量(I
    -V sweeping),本論文亦引入電流-時間(time evolution)在不同電
    壓下的變化,以及不同阻態下的介電量測,以探討電阻轉換行為,進
    一步證實燈絲理論(filament theory)的可能性。
    由於TiO2 材料並無電滯現象,因此本實驗試圖以缺氧方式,在
    通入純氬氣氛下,以TiO2 作為靶材,鍍製缺氧量較高的TiOx 薄膜,
    形成Pt/TiOx/Pt 結構。結果發現確實能夠提升其電滯效應,並且電滯
    效應的原因可能主要來自於薄膜內部的貢獻。


    目錄 第一章 前言…………………………………………………………………………..1 1.1 簡介………………………………………...………………………..……1 1.2 研究動機………………………………………………………….….…...2 第二章 文獻回顧………………………………………………………………..……4 2.1 二氧化鈦材料簡介……………………………………………………….4 2.2 記憶體的種類…………………………………………………………….5 2.2.1 磁阻式記憶體 [7]………...............................................................6 2.2.2 鐵電記憶體 [8]……………….......................................................7 2.2.3 相變化記憶體 [8]………….......................................................…8 2.2.4 電阻式記憶體 [2,3]…………...............................................…….9 2.3 電阻式記憶體材料種類………………………………………………...10 2.3.1 鈣鈦礦結構材料............................................................................10 2.3.2 單元過渡金屬氧化物....................................................................11 2.3.3 高分子材料....................................................................................13 2.4 電阻轉換現象的種類介紹.......................................................................13 2.4.1 Switching phenomenon..................................................................13 2.4.2 Hysteretic current...........................................................................13 2.5 對應於不同轉換現象的I-V 量測方法...................................................14 2.5.1 單極(Unipolar)量測..................................................................14 2.6 常見單極(unipolar)轉換的量測方式種類簡介..................................15 2.6.1 Voltage sweeping............................................................................15 2.6.2 Electric-Pulse-Induced Resistance.................................................16 2.6.3 Time evolution at different voltage................................................16 2.7 電流上限值的用途介紹[19]....................................................................17 2.7.1 電流上限值的分類 ......................................................................17 2.7.2 設定電流上限值的原因 ..............................................................17 2.8 目前對於「單極電阻轉換」的理論 ......................................................18 2.8.1 焦耳熱效應....................................................................................18 2.8.2 氧化還原反應伴隨之金屬陽離子傳導 [30] ............................21 2.8.3 氧化還原反應伴隨之陰離子傳導 [30] ....................................21 2.10 目前對於「雙極電滯效應」的理論.....................................................22 2.10.1 介面主導......................................................................................22 2.10.1.1 P 型蕭基介面....................................................................22 2.10.1.2 N型蕭基介面....................................................................23 II 2.10.2 薄膜主導......................................................................................23 2.10.2.1 區域載子陷阱模型 [35]..................................................23 2.10.2.2 氧空缺陷阱機制 [27] ....................................................25 2.11 介電崩潰機制 ......................................................................................26 2.11.1 本質崩潰......................................................................................26 2.11.2 熱崩潰..........................................................................................26 2.11.3 電化學崩潰..................................................................................26 2.11.4 放電崩潰......................................................................................26 2.12 漏電流機制 ......................................................................................27 2.12.1 介面主導......................................................................................27 2.12.1.1 蕭基發射...........................................................................27 2.12.1.2 穿遂效應...........................................................................27 2.12.2 薄膜內部主導..............................................................................28 2.12.2.1 空間電荷限制電流.............................................................28 2.12.2.2 普爾-法蘭克發射...........................................................28 2.12.2.3 離子傳導...........................................................................28 2.12.2.4 本質傳導...........................................................................29 第三章 實驗流程 ....................................................................................................43 3.1 試片製備...................................................................................................43 3.1.1 底電極及基板 ............................................................................43 3.1.2 TiO2 靶材製作 ............................................................................43 3.1.3 鍍膜參數條件................................................................................43 3.1.4 退火條件 ......................................................................................45 3.1.5 上電極鍍製....................................................................................45 3.2 薄膜分析...................................................................................................46 3.2.1 薄膜結晶分析 ..............................................................................46 3.2.2 低掠角X 光繞射分析...................................................................46 3.2.3 掃描式電子顯微鏡 ......................................................................46 3.2.4 原子力顯微鏡 ..............................................................................47 3.3 薄膜量測...................................................................................................47 3.3.1 電流-電壓量測 ..............................................................................47 3.3.2 電流-時間隨電壓變化...................................................................47 3.3.3 介電特性分析................................................................................48 第四章 結果討論(一)..............................................................................................50 4.1 微結構分析 ..............................................................................................50 4.1.1 厚度量測........................................................................................50 4.1.2 X 光繞射分析................................................................................50 4.1.3 掃描式電子顯微鏡分析................................................................51 III 4.1.4 原子力顯微鏡分析........................................................................51 4.2 電性分析...................................................................................................52 4.2.1 電流-電壓量測,電流以對數表示..............................................52 4.2.2 電流-電壓量測,電流以線性表示............................................55 4.2.3 不同電壓下電流對時間變化........................................................57 4.2.3.1 未退火條件.........................................................................57 4.2.3.2 500℃退火條件...................................................................58 4.2.3.3 700℃退火條件...................................................................59 4.2.3.4 電流對電壓及電流對時間變化在各條件之綜合比較.....60 4.2.4 介電特性分析................................................................................62 4.2.4.1 未退火條件.........................................................................63 4.2.4.2 400℃退火條件...................................................................64 4.2.4.3 500℃退火條件...................................................................65 4.2.4.4 600℃退火條件...................................................................65 4.2.4.5 700℃退火條件...................................................................66 4.2.4.6 介電特性之綜合比較.........................................................66 4.3 退火溫度對單極電阻轉換影響...............................................................67 第五章 結果討論(二)..............................................................................................105 5.1 微結構分析 ............................................................................................105 5.1.1 厚度量測......................................................................................105 5.1.2 X 光繞射分析..............................................................................105 5.1.3 掃描式電子顯微鏡分析..............................................................106 5.1.4 原子力顯微鏡分析......................................................................106 5.2 電性分析.................................................................................................107 5.2.1 雙極電滯量測(接上-下電極)..............................................107 5.2.2 雙極電滯量測(接上-上電極)..............................................109 5.2.3 雙極電滯效應的探討..................................................................110 5.2.4 單極電阻轉換量測(接上-下電極)......................................112 5.2.5 介電特性量測 ............................................................................112 第六章 結論 ............................................................................................................143 6.1 TiO2 薄膜在單極轉換效應的探討........................................................143 6.2 TiOx 薄膜在雙極電滯效應的探討........................................................144 參考文獻...................................................................................................................145 IV 圖目錄 圖1-1 PCMO 材料應用於RRAM的元件結構圖 [2]...............................................3 圖2-1 二氧化鈦之三種結構(a)Brookite(b)Rutile(c)Anatase..................30 圖2-2 二氧化鈦陶瓷體導電率與溫度之關係 [5].................................................31 圖2-3 磁阻式記憶體操作原理圖 [7].....................................................................31 圖2-4 磁阻式記憶體結構示意圖 [7].....................................................................32 圖2-5 P-E 電滯特性曲線圖 [8] ..............................................................................32 圖2-4 OUM 記憶體及操作原理圖 [8]...................................................................33 圖2-5 (a)Switching phenomenon (b)Hysteretic current..................................34 圖2-6 unipolar switching [29]...................................................................................34 圖2-7 bipolar(a)未設定電流上限值 (b)設定電流上限值 [26]...................35 圖2-8 voltage sweeping(a)I-V 模式(b)R-cycle 模式(c)高低阻值比統計 [32] ..............................................................................................................36 圖2-9 EPIR 範例 (a)波形的選擇 (b)電阻轉換測量結果 [34,35]..............37 圖2-10 time evolution 範例 [36]..............................................................................37 圖2-11 電流上限值的種類......................................................................................38 圖2-12 燈絲理論中所描述之導通路徑 [30].........................................................38 圖2-13 介電崩潰在薄膜中產生之樹枝狀路徑 [39].............................................39 圖2-14 還原反應伴隨之陽離子遷移 [30].............................................................39 圖2-15 P 型蕭基介面主導之雙極電滯效應 [41]..................................................40 圖2-16 N 型蕭基介面主導之雙極電滯效應 [43]..................................................40 圖2-17 (a)區域載子陷阱模型示意圖(b)施加偏壓下電子佔據比例與時間關 係 [35]..........................................................................................................41 圖3-1 實驗基板結構簡圖 ......................................................................................49 圖4-1 TiO2 薄膜截面圖...........................................................................................70 圖4-2 各條件下的XRD 量測結果……………………………………………….70 圖4-3 兩倍鍍膜時間之薄膜,各條件下之(a)XRD (b)GIXRD 量測結果.71 圖4-4 (a)未退火,及(b)400(c)500(d)600(e)700 ℃之SEM 微結構 圖。.................................................................................................................72 圖4-5 (a)未退火,及(b)400(c)500(d)600(e)700 ℃之AFM 微結構 圖。.................................................................................................................73 圖4-6 (a)未退火(b)400(c)500(d)600(e)700 ℃(f)綜合比較高低 阻態, 以對數表式之I - V s w e e p i n g 量 測。…………………………….....................................................................74 V 圖4-7 高阻態在(a)未退火(b)400(c)500(d)600(e)700 ℃,將電流 取對數- 電壓開根號,做為推測蕭基發射機制的曲線(f i t t ing curve)。..........................................................................................................75 圖4-8 高阻態在(a)未退火(b)400(c)500(d)600(e)700 ℃(f)比較 不同退火溫度,以線性表示之I-V...............................................................76 圖4-9 低阻態在(a)未退火(b)400(c)500(d)600(e)700 ℃,以線性 表式之I-V sweeping 量測............................................................................77 圖4-10 未退火條件在高阻態不同電壓下之time evolution(a)1.5(b)2.1(c) 2.2(d)2.3(e)2.4(f)2.5(g)2.6V....................................................................79 圖4-11 未退火條件在低阻態不同電壓下之time evolution(a)0.4(b)0.5(c) 0.6(d)0.7V ..............................................................................................80 圖4-12 500℃退火條件在高阻態不同電壓下之time evolution(a)1(b)1.7(c) 1.9(d)2.1(e)2.3(f)2.5(g)2.7 V....................................................................82 圖4-13 500℃退火條件在低阻態不同電壓下之time evolution(a)0.2(b)0.4 (c)0.6(d)0.7(e)0.8 V.................................................................................83 圖4-14 700℃退火條件在高阻態不同電壓下之time evolution(a)1.5(b)1.9 (c)2(d)2.1(e)2.2(f)2.3(g)2.4 V...............................................................85 圖4-15 700℃退火條件在低阻態不同電壓下之time evolution(a)0.2(b)0.3 (c)0.4(d)0.5(e)0.6(f)0.7(g)0.8 V............................................................87 圖4-16 未退火條件在原始阻態之(a)介電常數-頻率 (b)不同頻率下之 介電常數-電壓(c)在1K Hz 之介電常數-電壓(d)在1M Hz 之介 電常數-電壓 量測結果.............................................................................88 圖4-17 未退火條件在高阻態之(a)介電常數-頻率 (b)不同頻率下之介電 常數-電壓(c)在1K Hz 之介電常數-電壓(d)在1M Hz 之介電常 數-電壓 量測結果.....................................................................................89 圖4-18 未退火條件在低阻態之(a)電感-頻率(b)不同頻率下之電感-電壓 (c)在1K Hz 之電感-電壓(d)在1M Hz 之電感-電壓 量測結果 ......................................................................................................................90 圖4-19 400℃退火條件在原始阻態之(a)介電常數-頻率(b)不同頻率下之 介電常數-電壓(c)在1K Hz 之介電常數-電壓(d)在1M Hz 之介 電常數-電壓 量測結果.............................................................................91 圖4-20 400℃退火條件在高阻態之(a)介電常數-頻率(b)不同頻率下之介 電常數-電壓(c)在1K Hz 之介電常數-電壓(d)在1M Hz 之介電 常數-電壓 量測結果 ..............................................................................92 圖4-21 400℃退火條件在低阻態之(a)電感-頻率(b)不同頻率下之電感- 電壓(c)在1K Hz 之電感-電壓(d)在1M Hz 之電感-電壓 量測結 果...................................................................................................................93 VI 圖4-22 500℃退火條件在原始阻態之(a)電感-頻率(b)不同頻率下之電感 -電壓(c)在1K Hz 之電感-電壓(d)在1M Hz 之電感-電壓 量測 結果...............................................................................................................94 圖4-23 500℃退火條件在高阻態之(a)介電常數-頻率(b)不同頻率下之介 電常數-電壓(c)在1K Hz 之介電常數-電壓(d)在1M Hz 之介電 常數-電壓 量測結果 ..............................................................................95 圖4-24 500℃退火條件在低阻態之(a)電感-頻率(b)不同頻率下之電感- 電壓(c)在1K Hz 之電感-電壓(d)在1M Hz 之電感-電壓 量測結 果...................................................................................................................96 圖4-25 600℃退火條件在原始阻態之(a)電感-頻率(b)不同頻率下之電感 -電壓(c)在1K Hz 之電感-電壓(d)在1M Hz 之電感-電壓 量測 結果...............................................................................................................97 圖4-26 600℃退火條件在高阻態之(a)介電常數-頻率(b)不同頻率下之介 電常數-電壓(c)在1K Hz 之介電常數-電壓(d)在1M Hz 之介電 常數-電壓 量測結果.................................................................................98 圖4-27 600℃退火條件在低阻態之(a)電感-頻率(b)不同頻率下之電感- 電壓(c)在1K Hz 之電感-電壓(d)在1M Hz 之電感-電壓 量測結 果...................................................................................................................99 圖4-28 700℃退火條件在原始阻態之(a)電感-頻率(b)不同頻率下之電感 -電壓(c)在1K Hz 之電感-電壓(d)在1M Hz 之電感-電壓 量測 結果.............................................................................................................100 圖4-29 700℃退火條件在高阻態之(a)介電常數-頻率(b)不同頻率下之介 電常數-電壓(c)在1K Hz 之介電常數-電壓(d)在1M Hz 之介電 常數-電壓 量測結果...............................................................................101 圖4-30 700℃退火條件在低阻態之(a)電感-頻率(b)不同頻率下之電感- 電壓(c)在1K Hz 之電感-電壓(d)在1M Hz 之電感-電壓 量測結 果.................................................................................................................102 圖4-31 綜合比較(a)未退火至500℃退火條件在原始阻態之介電常數-頻率 的變化(b)600 及700℃退火條件在原始阻態之電感-頻率的變化(c) 各條件在高阻態之介電常數-頻率的變化(d)各條件在高阻態之介電 常數-頻率的變化。...................................................................................103 圖5-1 鍍製之TiOx 薄膜截面圖............................................................................115 圖5-2 各條件下的XRD量測結果.........................................................................115 圖5-3 SEM 微結構圖(a)未退火(b)300(c)400(d)500℃....................................117 圖5-4 未退火條件之AFM 微結構圖(a)2-D (b)3-D..........................................118 圖5-5 300℃退火條件之AFM 微結構圖(a)2-D (b)3-D....................................119 圖5-6 400℃退火條件之AFM 微結構圖(a)2-D (b)3-D....................................120 圖5-7 500℃退火條件之AFM 微結構圖(a)2-D (b)3-D....................................121 VII 圖5-8 雙極電滯曲線(接上下電極)(a)未退火(b)300(c)400(d)500℃.............123 圖5-9 比較各條件的電滯行為(a)正負2V(b)正負4V........................................124 圖5-10 未退火條件之雙極電滯曲線(接上上電極)(a)2~10V(b)12~20V.........125 圖5-11 接上下電極,雙極量測方式之示意圖(a)正偏壓(b)負偏壓..................126 圖5-12 接上上電極,雙極量測方式之示意圖(a)正偏壓(b)負偏壓..................126 圖5-13 單極電阻轉換測量結果(a)未退火(b)300(c)400(d)500℃...................128 圖5-14 未退火條件,介電常數對頻率的變化......................................................129 圖5-15 未退火條件,電容對電壓變化(正負2V)(a)1K Hz (b)1M Hz.............130 圖5-16 未退火條件,電容對電壓變化(正負4V)(a)1K Hz (b)1M Hz.............131 圖5-17 300℃退火條件,介電常數對頻率的變化................................................132 圖5-18 300℃退火條件,電容對電壓變化(正負2V)(a)1K Hz (b)1M Hz.......133 圖5-19 300℃退火條件,電容對電壓變化(正負4V)(a)1K Hz (b)1M Hz.....134 圖5-20 400℃退火條件,介電常數對頻率的變化................................................135 圖5-21 400℃退火條件,電容對電壓變化(正負2V)(a)1K Hz (b)1M Hz.......136 圖5-22 400℃退火條件,電容對電壓變化(正負4V)(a)1K Hz (b)1M Hz.....137 圖5-23 500℃退火條件,介電常數對頻率的變化................................................138 圖5-24 500℃退火條件,電容對電壓變化(正負2V)(a)1K Hz (b)1M Hz.......139 圖5-25 500℃退火條件,電容對電壓變化(正負4V)(a)1K Hz (b)1M Hz.......140 圖5-26 比較不同退火條件下之介電常數對頻率變化........................................141 VIII 表目錄 表2-1 二氧化鈦各結晶相之基本特性....................................................................42 表2-2 在各退火條件在0.5V 偏壓下之電阻值及電阻比值...................................42 表2-3 二氧化鈦各結晶相之基本特性....................................................................42 表3-1 TiO2 薄膜鍍製參數 ......................................................................................44 表3-2 TiOx 薄膜鍍製參數 ......................................................................................44 表3-3 Pt 上電極鍍製參數…………………………………………………………45 表4-1 在各退火條件在0.5V 偏壓下之電阻值及電阻比值.................................104 表4-2 在各退火條件下其高低阻態之電流與電壓行為......................................104 表5-1 比較不同退火條件之最大阻值比 ............................................................142

    [1] S. T. Hsu, W. W. Zhuang, T. K. Li et al., "RRAM switching
    mechanism," 2005 Non-Volatile Memory Technology Symposium,
    Proceedings, 121-124 (2005).
    [2] W. W. Zhuang, W. Pan, B. D. Ulrich et al., "Novell Colossal
    Magnetoresistive thin film nonvolatile resistance random access
    memory (RRAM)," International Electron Devices 2002 Meeting,
    Technical Digest, 193-196 (2002).
    [3] 雷宇宏, "新興存儲器之技術動態探析."
    [4] V. V. Yakovlev, G. Scarel, C. R. Aita et al., "Short-range order in
    ultrathin film titanium dioxide studied by Raman spectroscopy,"
    Applied Physics Letters 76 (9), 1107-1109 (2000).
    [5] 吳朗, 電子陶瓷/介電. (全欣資訊, 台北巿, 1994), pp.139-142.
    [6] H. Shima, F. Takano, H. Muramatsu et al., "Control of resistance
    switching voltages in rectifying Pt/TiOx/Pt trilayer," Applied
    Physics Letters 92 (2008).
    [7] 葉林秀, 李佳謀, 徐明豐 等, "磁阻式隨機存取記憶體技術的發
    展—現在與未來," 物理雙月刊 廿六卷四期 (2004).
    [8] 簡昭欣, 呂正傑, 陳志遠 等, "先進記憶體簡介," 尖端科技 創
    刊號.
    [9] A. Sawa, T. Fujii, M. Kawasaki et al., "Hysteretic current-voltage
    characteristics and resistance switching at a rectifying
    146
    Ti/Pr0.7Ca0.3MnO3 interface," Applied Physics Letters 85 (18),
    4073-4075 (2004).
    [10] H. Sim, D. J. Seong, M. Chang et al., "Excellent Resistance
    Switching Characteristics of Pt/Single-crystal Nb-Doped SrTiO3,"
    IEEE (2006).
    [11] B. P. Andreasson, M. Janousch, U. Staub et al., "Resistive
    switching in Cr-doped SrTiO3: An X-ray absorption spectroscopy
    study," Materials Science and Engineering B-Solid State Materials
    for Advanced Technology 144 (1-3), 60-63 (2007).
    [12] C. Y. Liu, P. H. Wu, A. Wang et al., "Bistable resistive switching of
    a sputter-deposited Cr-doped SrZrO3 memory film," Ieee Electron
    Device Letters 26 (6), 351-353 (2005).
    [13] C. Y. Liu, C. C. Chuang, J. S. Chen et al., "Memory effect of
    sol-gel derived V-doped SrZrO3 thin films," Thin Solid Films 494
    (1-2), 287-290 (2006).
    [14] R. Oligschlaeger, R. Waser, R. Meyer et al., "Resistive switching
    and data reliability of epitaxial (Ba,Sr)TiO3 thin films," Applied
    Physics Letters 88 (2006).
    [15] D. Hsu, J. G. Lin, and W. F. Wu, "Resistive switching effects in
    Nd0.7Ca0.3MnO3 manganite," Journal of Magnetism and
    Magnetic Materials 310 (2), 978-980 (2007).
    [16] D. S. Shang, L. D. Chen, Q. Wang et al., "Asymmetric fatigue and
    its endurance improvement in resistance switching of
    Ag-La0.7Ca0.3MnO3-Pt heterostructures," Journal of Physics
    D-Applied Physics 40 (17), 5373-5376 (2007).
    [17] C. C. Lin, B. C. Tu, C. H. Lin et al., "Resistive switching
    mechanisms of V-doped SrZrO3 memory films," Ieee Electron
    Device Letters 27 (9), 725-727 (2006).
    147
    [18] C. C. Lin, B. C. Tu, J. S. Yu et al., "Resistive switching properties
    of SrZrO3-based memory films," Japanese Journal of Applied
    Physics Part 1-Regular Papers Brief Communications & Review
    Papers 46 (4B), 2153-2156 (2007).
    [19] C. Rohde, B. J. Choi, D. S. Jeong et al., "Identification of a
    determining parameter for resistive switching of TiO2 thin films,"
    Applied Physics Letters 86 (26) (2005).
    [20] S. Seo, M. J. Lee, D. H. Seo et al., "Reproducible resistance
    switching in polycrystalline NiO films," Applied Physics Letters 85
    (23), 5655-5657 (2004).
    [21] S. Kim, I. Byun, I. Hwang et al., "Giant and stable conductivity
    switching behaviors in ZrO2 films deposited by pulsed laser
    depositions," Japanese Journal of Applied Physics Part 2-Letters &
    Express Letters 44 (8-11), L345-L347 (2005).
    [22] R. Dong, D. S. Lee, W. F. Xiang et al., "Reproducible hysteresis
    and resistive switching in metal-CuxO-metal heterostructures,"
    Applied Physics Letters 90 (4) (2007).
    [23] D. Lee, D. J. Seong, I. Jo et al., "Resistance switching of copper
    doped MoOx films for nonvolatile memory applications," Applied
    Physics Letters 90 (12) (2007).
    [24] C. Y. Lin, C. Y. Wu, C. Hu et al., "Bistable resistive switching in
    Al2O3 memory thin films," Journal of the Electrochemical Society
    154 (9), G189-G192 (2007).
    [25] K. M. Kim, B. J. Choi, B. W. Koo et al., "Resistive switching in
    Pt/Al2O3/TiO2/Ru stacked structures," Electrochemical and Solid
    State Letters 9 (12), G343-G346 (2006).
    [26] D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of bipolar
    and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack,"
    Electrochemical and Solid State Letters 10 (8), G51-G53 (2007).
    148
    [27] Lee-Eun Yu, Sungho Kim, Min-Ki Ryu et al., "Structure Effects on
    Resistive Switching of Al/TiOx/Al Devices for RRAM
    Applications," IEEE ELECTRON DEVICE LETTERS 29 (4),
    331-333 (2008).
    [28] S. Karthauser, B. Lussem, M. Weides et al., "Resistive switching of
    rose bengal devices: A molecular effect?," Journal of Applied
    Physics 100 (9) (2006).
    [29] B. J. Choi, D. S. Jeong, S. K. Kim et al., "Resistive switching
    mechanism of TiO2 thin films grown by atomic-layer deposition,"
    Journal of Applied Physics 98 (3) (2005).
    [30] R. Waser and M. Aono, "Nanoionics-based resistive switching
    memories," Nature Materials 6, 833-840 (2007).
    [31] "Agilent-4155C handbook-Expand Your Parametric Test
    Horizons."
    [32] H. Y. Lee, P. S. Chen, C. C. Wang et al., "Low-power switching of
    nonvolatile resistive memory using hafnium oxide," Japanese
    Journal of Applied Physics Part 1-Regular Papers Brief
    Communications & Review Papers 46 (4B), 2175-2179 (2007).
    [33] A. Baikalov, Y. Q. Wang, B. Shen et al., "Field-driven hysteretic
    and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3
    interface," Applied Physics Letters 83 (5), 957-959 (2003).
    [34] R. Dong, Q. Wang, L. Chen et al., "Resistance switching driven by
    polarity and voltage of electric pulse in AgLa0.7Ca0.3MnO3Pt
    sandwiches," Applied Physics a-Materials Science & Processing 81,
    265-268 (2005).
    [35] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, "Nonvolatile
    memory with multilevel switching: a basic model," Physical
    Review Letter 92 (17), 178302 (2004).
    149
    [36] N.A. Chowdhury, G. Bersuker, C. Young et al., "Breakdown
    characteristics of nFETs in inversion with metal/HfO2 gate stacks,"
    Microelectronic Engineering 85, 27-35 (2008).
    [37] N. Hwang, T. L. Tan, and C. L. Gan, "Distinction of Intrinsic and
    Extrinsic Breakdown Failure Modes of Cu/Low-k Interconnects,"
    Proceedings of ESSDERC, Grenoble, France,, 273-276 (2005).
    [38] Y. Sato, K. Kinoshita, M. Aoki et al., "Consideration of switching
    mechanism of binary metal oxide resistive junctions using a
    thermal reaction model," Applied Physics Letters 90 (3) (2007).
    [39] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, "Growth model
    for filamentary streamers in an ambient field," IEEE Transactions
    on Dielectrics and Electrical Insulation 10 (1), 73-79 (2003).
    [40] S. Seo, M. J. Lee, D. H. Seo et al., "Conductivity switching
    characteristics and reset currents in NiO films," Applied Physics
    Letters 86 (9) (2005).
    [41] S. R. Lee, K. Char, D. C. Kim et al., "Resistive memory switching
    in epitaxially grown NiO," Applied Physics Letters 91 (20) (2007).
    [42] P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen et al., "Ferroelectric
    Schottky diode," Physical Review Letters 73 (15), 2107-2110
    (1994).
    [43] T. Fujii, M. Kawasaki, A. Sawa et al., "Hysteretic current-voltage
    characteristics and resistance switching at an epitaxial oxide
    Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Applied Physics
    Letters 86 (1) (2005).
    [44] Ming-Daou Lee, Chia-Hua Ho, Chi-Kuen Lo et al., "Effect
    of Oxygen Concentration on Characteristics of NiOx-Based
    Resistance Random Access Memory," IEEE Transactions On
    Magnetics 43 (2), 939-942 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE