研究生: |
陳昱庭 Chen, Yu-Ting |
---|---|
論文名稱: |
Rhb1-TOR訊息路徑對白色念珠菌致病因子調控之研究 The Rhb1-TOR Signaling Pathway in Regulation of Candida albicans Virulence Factors |
指導教授: |
藍忠昱
Lan, Chung-Yu |
口試委員: |
藍忠昱
張晃猷 張壯榮 羅秀榮 楊程堯 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 136 |
中文關鍵詞: | 白色念珠菌 、致病因子 、訊息傳遞 、致病性 |
外文關鍵詞: | Candida albicans, virulence factor, signal transduction, pathogenicity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白色念珠菌(C. albicans)為常見的伺機性真菌病原菌。在免疫功能低下的患者,白色念珠菌的存在可能帶給患者致命的威脅。而我們的研究是為了了解期其致病因子的調控機制。近年來,我們發現小G蛋白Rhb1與雷帕霉素標的蛋白(TOR)共組而成之訊息傳遞路徑會調控某些致病因子的表達,包括分泌性天冬胺酸蛋白質水解酵素2號(Sap2)以及低氮源引發的形態生成(morphogenesis)。
本論文由兩個部分組成。在第一部分中,我們利用點突變、盈綠螢光蛋白標的及雷帕霉素感受性試驗證明了Rhb1在膜上的位置對於其功能是重要的。在人類與分裂酵母菌上已經證明了與GTP結合之Rhb1可藉由間接的方式調控Tor1。本研究同樣發現白色念珠菌的Rhb1也是透過非直接的方式影響Tor1,同時和Tsc2 (Rhb1之小G蛋白活化蛋白)有遺傳相互作用。更進一步地,我們發現在缺乏Rhb1時,存在有大量的Tsc2會去抑制Ras1-依賴性訊息並且進一步導致低氮源所引起的形態生成產生缺陷。進一步的結果說明了Ras1也參與在TOR訊息傳遞路徑且可能位於Rhb1之上游或與之無關。
我們接下來把重心轉移到Rhb1-TOR訊息路徑以及外在環境條件的改變是如何去調控分泌性天冬胺酸蛋白質水解酵素2號的表達上。在非活細胞內的研究發現,分泌性天冬胺酸蛋白質水解酵素2號是表達量最高的分泌性天冬胺酸蛋白質水解酵素,它也是個重要的致病因子。本研究發現當白色念珠菌生長在以蛋白質為主要可用之氮源的環境時,其細胞的生長是與Rhb1調控Sap2之表達有所關連。其中調控過程包與許多TOR訊息路徑類的分子有關,包括Tor1酵素本身與其下游之作用蛋白。TOR訊息路徑不只調控Sap2之轉錄,也影響著其蛋白質的量,這可能是透過一般性胺基酸控制(GAAC)之路徑來達成。DNA微陣列分析找到了除了SAP2以外的其他Rhb1下游標的基因。這些發現使吾人在環境營養源、Rhb1-TOR訊息、與白色念珠菌的致病因子表達中獲得新的視野與想法。
Candida albicans is one of the most common opportunistic fungal pathogens, causing life-threatening disease in immunocompromised patients. We aimed to clarify the regulatory mechanism of some of its virulence factors. We found that the small GTPase Rhb1 and target of rapamycin (TOR) signaling pathway regulates the expression of several C. albicans virulence factors, including secreted aspartyl protease 2 and low nitrogen-mediated morphogenesis. This dissertation comprises two parts. The first part uses site-directed mutagenesis, green fluorescent protein tagging and rapamycin susceptibility assay to show that membrane localization is crucial for Rhb1 activity. In both human and fission yeast, GTP-bound Rhb1 directly activates the TOR kinase. The results indicated that C. albicans Rhb1 may regulate the Tor1 kinase in an indirect manner and Rhb1 has a genetic interaction with the Tsc2 GTPase-activating protein. Moreover, in the absence of Rhb1, the high amount of Tsc2 repressed the Ras1-dependent signaling and caused a defect in low nitrogen-mediated morphogenesis. Ras1 may also involve in TOR signaling pathway upstream or independent of Rhb1.
We next focused on how Rhb1-TOR pathway and the environmental condition changes regulate the expression of secreted aspartyl protease 2 (Sap2), which is the most highly expressed Sap in vitro, and is an important virulence factor. This study shows that Rhb1 is related to cell growth through the control of SAP2 expression when protein is the major nitrogen source. This process involves various components of the TOR signaling pathway, including Tor1 kinase and its downstream effectors. TOR signaling not only controls SAP2 transcription, but also affects Sap2 protein levels, possibly through general amino acid control (GAAC) pathway. DNA microarray analysis identifies other target genes downstream of Rhb1 in addition to SAP2. These findings provide new insights into nutrients, Rhb1-TOR signaling, and expression of C. albicans virulence factor.
1. Calderone RA (2002) Candida and candidiasis. Washington, D.C.: ASM Press. xiii, 451 p. p.
2. Odds FC (1988) Candida and candidosis. London ; Philadelphia: Baillière Tindall. x, 468 p., [468] p. of plates p.
3. Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9: 327-335.
4. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15: 702-713.
5. Hanker AB, Mitin N, Wilder RS, Henske EP, Tamanoi F, et al. (2010) Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 29: 380-391.
6. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, et al. (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25: 903-915.
7. Rehmann H, Bruning M, Berghaus C, Schwarten M, Kohler K, et al. (2008) Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 582: 3005-3010.
8. Rohde JR, Bastidas R, Puria R, Cardenas ME (2008) Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr Opin Microbiol 11: 153-160.
9. Otsubo Y, Yamamato M (2008) TOR signaling in fission yeast. Crit Rev Biochem Mol Biol 43: 277-283.
10. Chen EJ, Kaiser CA (2003) LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 161: 333-347.
11. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, et al. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457-468.
12. Reinke A, Anderson S, McCaffery JM, Yates J, 3rd, Aronova S, et al. (2004) TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 279: 14752-14762.
13. Wedaman KP, Reinke A, Anderson S, Yates J, 3rd, McCaffery JM, et al. (2003) Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell 14: 1204-1220.
14. Fadri M, Daquinag A, Wang S, Xue T, Kunz J (2005) The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell 16: 1883-1900.
15. Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, et al. (2001) Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45: 3162-3170.
16. Bastidas RJ, Heitman J, Cardenas ME (2009) The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 5: e1000294.
17. Beck T, Hall MN (1999) The TOR signaling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689-692.
18. Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, et al. (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275: 35727-35733.
19. Cox KH, Rai R, Distler M, Daugherty JR, Coffman JA, et al. (2000) Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J Biol Chem 275: 17611-17618.
20. Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96: 14866-14870.
21. Kuruvilla FG, Shamji AF, Schreiber SL (2001) Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors. Proc Natl Acad Sci U S A 98: 7283-7288.
22. Magasanik B (2005) The transduction of the nitrogen regulation signal in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102: 16537-16538.
23. Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290: 1-18.
24. Rohde JR, Campbell S, Zurita-Martinez SA, Cutler NS, Ashe M, et al. (2004) TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors. Mol Cell Biol 24: 8332-8341.
25. Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13: 3271-3279.
26. deHart AK, Schnell JD, Allen DA, Tsai JY, Hicke L (2003) Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol Biol Cell 14: 4676-4684.
27. Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M (2007) Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 27: 3154-3164.
28. Liao WL, Ramon AM, Fonzi WA (2008) GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans. Fungal Genet Biol 45: 514-526.
29. Mach KE, Furge KA, Albright CF (2000) Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 155: 611-622.
30. Tsao CC, Chen YT, Lan CY (2009) A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol 46: 126-136.
31. Biswas K, Morschhauser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56: 649-669.
32. Dabas N, Morschhauser J (2007) Control of ammonium permease expression and filamentous growth by the GATA transcription factors GLN3 and GAT1 in Candida albicans. Eukaryot Cell 6: 875-888.
33. Dabas N, Morschhauser J (2008) A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. Mol Microbiol 69: 586-602.
34. Hancock JF, Cadwallader K, Paterson H, Marshall CJ (1991) A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 10: 4033-4039.
35. Roberts PJ, Mitin N, Keller PJ, Chenette EJ, Madigan JP, et al. (2008) Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283: 25150-25163.
36. Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS (1990) Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 62: 81-88.
37. Casey PJ, Thissen JA, Moomaw JF (1991) Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci U S A 88: 8631-8635.
38. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM (1997) Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 272: 14093-14097.
39. Sebti SM, Der CJ (2003) Opinion: Searching for the elusive targets of farnesyltransferase inhibitors. Nat Rev Cancer 3: 945-951.
40. Winter-Vann AM, Casey PJ (2005) Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer 5: 405-412.
41. Takahashi K, Nakagawa M, Young SG, Yamanaka S (2005) Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol Chem 280: 32768-32774.
42. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67: 400-428, table of contents.
43. Hube B, Ruchel R, Monod M, Sanglard D, Odds FC (1998) Functional aspects of secreted Candida proteinases. Adv Exp Med Biol 436: 339-344.
44. Reuss O, Morschhauser J (2006) A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol Microbiol 60: 795-812.
45. Hube B, Sanglard D, Odds FC, Hess D, Monod M, et al. (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65: 3529-3538.
46. Bain JM, Stubberfield C, Gow NA (2001) Ura-status-dependent adhesion of Candida albicans mutants. FEMS Microbiol Lett 204: 323-328.
47. Brand A, MacCallum DM, Brown AJ, Gow NA, Odds FC (2004) Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3: 900-909.
48. Cheng S, Nguyen MH, Zhang Z, Jia H, Handfield M, et al. (2003) Evaluation of the roles of four Candida albicans genes in virulence by using gene disruption strains that express URA3 from the native locus. Infect Immun 71: 6101-6103.
49. Lay J, Henry LK, Clifford J, Koltin Y, Bulawa CE, et al. (1998) Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66: 5301-5306.
50. Sharkey LL, Liao WL, Ghosh AK, Fonzi WA (2005) Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Microbiology 151: 1061-1071.
51. Lermann U, Morschhauser J (2008) Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology 154: 3281-3295.
52. Correia A, Lermann U, Teixeira L, Cerca F, Botelho S, et al. (2010) Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect Immun 78: 4839-4849.
53. Crandall M, Edwards JE, Jr. (1987) Segregation of proteinase-negative mutants from heterozygous Candida albicans. J Gen Microbiol 133: 2817-2824.
54. Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198: 179-182.
55. Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717-728.
56. Stynen B, Van Dijck P, Tournu H (2010) A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans. Nucleic Acids Res 38: e184.
57. Feng Q, Summers E, Guo B, Fink G (1999) Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181: 6339-6346.
58. Chen YT, Lin CY, Tsai PW, Yang CY, Hsieh WP, et al. (2012) Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. Eukaryot Cell 11: 168-182.
59. Staib P, Lermann U, Blass-Warmuth J, Degel B, Wurzner R, et al. (2008) Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrob Agents Chemother 52: 146-156.
60. Reuss O, Vik A, Kolter R, Morschhauser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127.
61. Park YN, Morschhauser J (2005) Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot Cell 4: 1328-1342.
62. Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, et al. (2004) Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol 53: 1451-1469.
63. Hsu PC, Yang CY, Lan CY (2011) Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence. Eukaryot Cell 10: 207-225.
64. Alonso-Monge R, Roman E, Arana DM, Prieto D, Urrialde V, et al. (2010) The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet Biol 47: 587-601.
65. Zhao X, Oh SH, Yeater KM, Hoyer LL (2005) Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151: 1619-1630.
66. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100: 9440-9445.
67. Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, et al. (1994) rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 269: 16333-16339.
68. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348: 125-132.
69. Aspuria PJ, Tamanoi F (2004) The Rheb family of GTP-binding proteins. Cell Signal 16: 1105-1112.
70. Urano J, Comiso MJ, Guo L, Aspuria PJ, Deniskin R, et al. (2005) Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 58: 1074-1086.
71. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117-127.
72. Urano J, Tabancay AP, Yang W, Tamanoi F (2000) The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem 275: 11198-11206.
73. Yang W, Urano J, Tamanoi F (2000) Protein farnesylation is critical for maintaining normal cell morphology and canavanine resistance in Schizosaccharomyces pombe. J Biol Chem 275: 429-438.
74. Han TL, Cannon RD, Villas-Boas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48: 747-763.
75. Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9: 737-748.
76. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348 Pt 2: 241-255.
77. Casey PJ, Seabra MC (1996) Protein prenyltransferases. J Biol Chem 271: 5289-5292.
78. Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905-909.
79. Bai X, Ma D, Liu A, Shen X, Wang QJ, et al. (2007) Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318: 977-980.
80. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33: 67-75.
81. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, et al. (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11: 1457-1466.
82. Duran RV, Hall MN (2012) Regulation of TOR by small GTPases. EMBO Rep 13: 121-128.
83. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124: 471-484.
84. Nakashima A, Sato T, Tamanoi F (2010) Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci 123: 777-786.
85. Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, et al. (2001) Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signaling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 42: 673-687.
86. Hube B, Monod M, Schofield DA, Brown AJ, Gow NA (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14: 87-99.
87. White TC, Agabian N (1995) Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177: 5215-5221.
88. Lee SA, Jones J, Hardison S, Kot J, Khalique Z, et al. (2009) Candida albicans VPS4 is required for secretion of aspartyl proteases and in vivo virulence. Mycopathologia 167: 55-63.
89. Shin CS, Kim SY, Huh WK (2009) TORC1 controls degradation of the transcription factor Stp1, a key effector of the SPS amino-acid-sensing pathway in Saccharomyces cerevisiae. J Cell Sci 122: 2089-2099.
90. Martinez P, Ljungdahl PO (2005) Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol Cell Biol 25: 9435-9446.
91. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, et al. (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2: e63.
92. Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006) Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5: 1604-1610.
93. Tournu H, Tripathi G, Bertram G, Macaskill S, Mavor A, et al. (2005) Global role of the protein kinase Gcn2 in the human pathogen Candida albicans. Eukaryot Cell 4: 1687-1696.
94. Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, et al. (2007) Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci U S A 104: 3514-3519.
95. Uritani M, Hidaka H, Hotta Y, Ueno M, Ushimaru T, et al. (2006) Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes Cells 11: 1367-1379.
96. van Slegtenhorst M, Carr E, Stoyanova R, Kruger WD, Henske EP (2004) Tsc1+ and tsc2+ regulate arginine uptake and metabolism in Schizosaccharomyces pombe. J Biol Chem 279: 12706-12713.
97. Weisman R, Roitburg I, Nahari T, Kupiec M (2005) Regulation of leucine uptake by tor1+ in Schizosaccharomyces pombe is sensitive to rapamycin. Genetics 169: 539-550.
98. van Slegtenhorst M, Mustafa A, Henske EP (2005) Pas1, a G1 cyclin, regulates amino acid uptake and rescues a delay in G1 arrest in Tsc1 and Tsc2 mutants in Schizosaccharomyces pombe. Hum Mol Genet 14: 2851-2858.
99. Matsumoto S, Bandyopadhyay A, Kwiatkowski DJ, Maitra U, Matsumoto T (2002) Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe. Genetics 161: 1053-1063.
100. Dong X, Mitchell DA, Lobo S, Zhao L, Bartels DJ, et al. (2003) Palmitoylation and plasma membrane localization of Ras2p by a nonclassical trafficking pathway in Saccharomyces cerevisiae. Mol Cell Biol 23: 6574-6584.
101. Hancock JF, Magee AI, Childs JE, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57: 1167-1177.
102. Nichols CB, Ferreyra J, Ballou ER, Alspaugh JA (2009) Subcellular localization directs signaling specificity of the Cryptococcus neoformans Ras1 protein. Eukaryot Cell 8: 181-189.
103. Onken B, Wiener H, Philips MR, Chang EC (2006) Compartmentalized signaling of Ras in fission yeast. Proc Natl Acad Sci U S A 103: 9045-9050.
104. Piispanen AE, Bonnefoi O, Carden S, Deveau A, Bassilana M, et al. (2011) Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. Eukaryot Cell 10: 1473-1484.
105. Fernandez Murray P, Biscoglio MJ, Passeron S (2000) Purification and characterization of Candida albicans 20S proteasome: identification of four proteasomal subunits. Arch Biochem Biophys 375: 211-219.
106. Damagnez V, Rolfe M, Cottarel G (1995) Schizosaccharomyces pombe and Candida albicans cDNA homologues of the Saccharomyces cerevisiae UBC4 gene. Gene 155: 137-138.
107. Sepulveda P, Cervera AM, Lopez-Ribot JL, Chaffin WL, Martinez JP, et al. (1996) Cloning and characterization of a cDNA coding for Candida albicans polyubiquitin. J Med Vet Mycol 34: 315-322.
108. Rubio-Texeira M, Kaiser CA (2006) Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol Biol Cell 17: 3031-3050.
109. Aspuria PJ, Sato T, Tamanoi F (2007) The TSC/Rheb/TOR signaling pathway in fission yeast and mammalian cells: temperature sensitive and constitutive active mutants of TOR. Cell Cycle 6: 1692-1695.
110. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623-627.
111. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322: 104-110.
112. Long X, Ortiz-Vega S, Lin Y, Avruch J (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280: 23433-23436.
113. Snider J, Kittanakom S, Damjanovic D, Curak J, Wong V, et al. (2010) Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. Nat Protoc 5: 1281-1293.
114. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129: 865-877.
115. Williams MJ (2011) Small GTPases: The ultimate selfish genes? Small GTPases 2: 189.
116. Biswas K, Rieger KJ, Morschhauser J (2003) Functional analysis of CaRAP1, encoding the Repressor/activator protein 1 of Candida albicans. Gene 307: 151-158.
117. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, et al. (2009) Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol 19: 621-629.
118. Schmelzle T, Beck T, Martin DE, Hall MN (2004) Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 24: 338-351.
119. Homma M, Chibana H, Tanaka K (1993) Induction of extracellular proteinase in Candida albicans. J Gen Microbiol 139 Pt 6: 1187-1193.
120. Xie MW, Jin F, Hwang H, Hwang S, Anand V, et al. (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci U S A 102: 7215-7220.
121. Bernardo SM, Khalique Z, Kot J, Jones JK, Lee SA (2008) Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation. Fungal Genet Biol 45: 861-877.
122. Zacchi LF, Gomez-Raja J, Davis DA (2010) Mds3 regulates morphogenesis in Candida albicans through the TOR pathway. Mol Cell Biol 30: 3695-3710.
123. Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, et al. (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7: 25-42.
124. Hinnebusch AG (1997) Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem 272: 21661-21664.
125. Staschke KA, Dey S, Zaborske JM, Palam LR, McClintick JN, et al. (2010) Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 285: 16893-16911.
126. Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S, et al. (2002) Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 21: 5448-5456.
127. Kmetzsch L, Staats CC, Simon E, Fonseca FL, Oliveira DL, et al. (2011) The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans. Fungal Genet Biol 48: 192-199.
128. Lee IR, Chow EW, Morrow CA, Djordjevic JT, Fraser JA (2011) Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans. Genetics 188: 309-323.
129. Panepinto JC, Oliver BG, Fortwendel JR, Smith DL, Askew DS, et al. (2003) Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of Invasive pulmonary aspergillosis. Infect Immun 71: 2819-2826.
130. Limjindaporn T, Khalaf RA, Fonzi WA (2003) Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol 50: 993-1004.