研究生: |
辛 塔 Shinta Anggia Murni |
---|---|
論文名稱: |
果蠅中酪氨酸亞硫酸基轉移酶與胜肽交互作用之探討 Characterization of Protein-peptide Interactions of Tyrosylprotein Sulfotransferase (TPST) from Drosophila melanogaster |
指導教授: |
陳俊榮
Chen, Chun-Jung |
口試委員: |
楊裕雄
Yang, Yuh-Shyong 鄭惠春 Cheng, Hui-Chun 楊裕雄 Yang, Yuh-Shyong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | no 、果蠅中酪 、氨酸亞硫酸基 、酶與胜肽交互作用 、中酪氨酸亞硫酸基 、酶與胜肽 |
外文關鍵詞: | no, Tyrosylprotein Sulfotransferase, Protein-peptide Interactions, Drosophila melanogaster, PAP, HADDOCK |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質酪氨酸的硫酸化作用是透過細胞膜上酪氨酸亞硫酸基轉移酶 (TPST) 所催化,而酪氨酸亞硫酸基轉移酶具有3'-磷酸腺苷-5'-磷酸硫酸酯 (PAPS) 作為輔助因子進行的目標蛋白的後修飾。要硫酸化蛋白質,需透過PAPS合成酶活化3'-磷酸腺苷-5'-磷酸硫酸鹽 (PAPS) 的硫酸鹽,再將3'-磷酸腺苷-5'-磷酸硫酸鹽 (PAPS) 中的硫基轉移到特定的目標蛋白質和胜肽中的酪氨酸殘基上。除阿拉伯芥 (Arabidopsis) 和果蠅 (Drosophila melanogaster) 僅具有一種TPST之外,其他所有生物均具有兩種TPST。果蠅TPST,稱為DmTPST (果蠅酪氨酸亞硫酸基轉移酶)。
DmTPST蛋白質從大腸桿菌中的BL21-CodonPlus(DE3)-RIL細胞中萃取,其中PET21b為載體。總序列共306氨基酸,其等電位點之理論值為6.73,分子量為37 kDa。本實驗所使用的DmTPST是從Trp115突變為Ala115,稱為DmTPST-W115A,而突變的目的是為了獲得的較均一性的單體蛋白,以有利進行蛋白質晶體的培養。在結晶之前需要針對DmTPST-W115A進行純化。純化第一步驟是使用NiSO4管柱進行親和層析,以親和性大小從其他蛋白分子中分離出目標蛋白。 第二步驟是使用EnrichTM SEC 650 nm管柱進行凝膠過濾層析,以分子質量分離目標蛋白,從而使純化的蛋白達到高純度。
之後,利用在蒸氣擴散結晶方法篩選與改良多種長晶條件,但所獲得的晶體品質不佳,無法成功取得X光繞射數據。因此,我們使用了對接軟體HADDOCK對DmTPST-W115A蛋白與PSGL-1胜肽之間的相互作用進行了模型建立,而在計算上我們採用了TPST含有PAP和不含PAP的兩種模式。結果顯示,在含有PAP的蛋白質-胜肽相互作用比沒有PAP的蛋白質具有更好的功能解釋,因為PSGL-1胜肽結合蛋白與位置接近DmTPST的催化區域及PAP,而PSGL-1胜肽的相對位置與結合模式也與之前文獻中人類TPST上 的C4胜肽相似,這意含本研究的果蠅TPST結果可以用來闡明人類TPST的催化機制。這種交互作用機制從根本上增強了複合物結構的穩定性,維持了蛋白質的折疊,並大幅度地減少了生物分子中水界面的相互作用。由分析結果顯示PSGL-1上的兩個主要酪氨酸殘基是Tys607和Tys610,它們可被DmTPST-W115A辨識,從而證明了蛋白質界面殘基 (Arg101 、Arg105、Thr200、Gln108和His112) 與受質胜肽之間的許多結合的作用,例如氫鍵,疏水鍵,鹽橋和π-陽離子等相互作用。
Protein tyrosine sulfation is catalyzed by membrane tyrosylprotein sulfotransferase (TPST) with 3'-phosphoadenosine-5'-phosphosulfate (PAPS) as a co-factor, which is a process of a post-translasional modification for the target protein. The process involves the actived sulfate of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) through PAPS synthetase to transfer the sulfur group from 3'- phosphoadenosine-5'-phosphosulfate (PAPS) into a specific tyrosine residue of the target proteins and peptides, which is needed for their functions. Almost all of the organisms have two kinds of TPST except Arabidopsis and Drosophila melanogaster that have only one form.
TPST from Drosophila melanogaster (fruit fly), called DmTPST, was extracted from BL21-CodonPlus (DE3)-RIL competent cells in Escherichia coli bacteria from the mutant W115A of DmTPST with PET21b as the palsmid. There are total 306 amino-acid residues with a theoretical isoelectric point 6.73 and a molecular mass 37 kDa. DmTPST, called DmTPST-W115A, has been mutated from Try115 to Ala115 to obtain the pure monomeric protein of DmTPST, presumably making a higher possibility of crystallization. The purification is needed in advance of the crystallization. The first purification was the affinity-chromatography with a NiSO4 column to isolate the target protein from other proteins. The second step was the gel filtration (size-exclusion chromatography) using an EnrichTM SEC 650 nm column to isolate the target protein by molecule masses to obtain the purified protein of a good quality.
Furthermore, the crystallization of the purified protein was first screened with the vapor-diffusion method with the various conditions. However, the crystallization of DmTPST was not successful despite a number of attempts. Alternatively, we used the docking software HADDOCK to model the complex structure to study the interactions between the DmTPST-W115A protein and the PSGL-1 peptide, with and without PAP in TPST, respectively. The protein-peptide interactions with PAP has the better reliability than that without PAP because the binding geometry and location PSGL-1 peptide are demonstrated to be close to the catalytic site of TPST, which is similar to a C4 peptide at the human TPST protein. This mechanism fundamentally enhances the stability of complex structure, maintans the protein folding and minimizes the water interface interaction in biological system of molecules. The two main tyrosine residues on PSGL-1 are Tys607 and Tys610, which are recognized by DmTPST-W115A, demonstrate several interactions between the substrate ligand and the interface residues (Arg101, Arg105, Thr200, Gln108, and His112) of protein through the hydrogen bond, hydrophobic bond, salt bridge, and π-cation interactions.
References
1. Cohen, P. The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem. Sci.2000;25:596–601.
2. P.A. Baeuerle, W.B. Huttner.Tyrosine sulfation of yolk proteins 1, 2, and 3 in Drosophila melanogaster J. Biol. Chem.1985;260:6434-6439.
3. F.R. Bettelheim.Tyrosine-O-sulfate in a peptide from fibrinogen, J. Am. Chem. Soc.1954;76:2838-2839.
4. W.B. Huttner.Sulphation of tyrosine residues—A widespread modification of proteins. Nature.1982;299:273-276.
5. B. Testa, in Comprehensive Medicinal Chemistry II, 2007.
6. M.W. Duffel, in Comprehensive Toxicology, 2010.
7. L.A. Stanley, in Pharmacognosy, 2017.
8. Moore, K. L. Proc. Natl. Acad. Sci. U. S. A. 2009;106:14741- 14742.
9. Ouyang, Y.-B., Lane, W. S. & Moore, K. L. TPST-1. Proc. Natl. Acad. Sci. USA. 1998;95:2896–2901.
10. Han, S.-W.; Lee, S.-W.; Ronald, P. C. Curr. Opin. Microbiol. 2011;14:62-67.
11. Honke, K.; Taniguchi, N. Med. Res. Rev. 2002;22:637-654.
12. Farzan M, Babcock GJ, Vasilieva N, Wright PL, Kiprilov E, Mirzabekov T, Choe H The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 alpha association and HIV-1 entry. J Biol Chem. 2002;277:29484–29489.
13. Kehoe JW, Bertozzi CR. Tyrosine sulfation: a modulator of extracellular protein–protein interactions. Chem Biol. 2000;7:R57– R61.
14. Westmuckett AD, Thacker KM, Moore KL .Tyrosine sulfation of native mouse Psgl-1 is required for optimal leukocyte rolling on P-selectin in vivo. PLoS One. 2011;6.
15. Danan LM, Yu Z, Ludden PJ, Jia W, Moore KL, Leary JA Catalytic mechanism of Golgi-resident human tyrosylprotein sulfotransferase-2: a mass spectrometry approach. J Am Soc Mass Spectrom. 2010;21:1633–1642.
16. Kasinathan C, Gandhi N, Ramaprasad P, Sundaram P, Ramasubbu N. Tyrosine sulfation of statherin. Int J Biol Sci. 2007;3:237–241.
17. Beisswanger R, et al. Existence of distinct tyrosylprotein sulfotransferase genes: Molecular characterization of tyrosylprotein sulfotransferase-2. Proc Natl Acad Sci U S A.1998;95.
18. Ouyang YB, et al. Tyrosylprotein sulfotransferase: Purification and molecular cloning of an enzyme that catalyzes tyrosine O–sulfation, a common posttranslational modification of eukaryotic proteins. Proc Natl Acad Sci U S A.1998;95:2896–901.
19. Ouyang YB, Moore KL. Molecular cloning and expression of human and mouse tyrosylprotein sulfotransferase-2 and a tyrosylprotein sulfotransferase homologue in Caenorhabditis elegans. J Biol Chem 1998;273.
20. Alnouti Y and Klaassen CD. Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicological sciences. 2006; 93:242-255.
21. Rosenthal E and Leustek T. A multifunctional Urechis caupo protein, PAPS synthetase, has both ATP sulfurylase and APS kinase activities. Gene. 1995;165:243-248.
22. Klaassen CD and Boles JW. Sulfation and sulfotransferases 5: the importance of 3’-phosphoadenosine 5’-phosphosulfate (PAPS) in the regulation of sulfation.
FASEB journal. 1997;11:404-418.
23. Venkatachalam KV, Akita H and Strott CA. Molecular cloning, expression, and characterization of human bifunctional 3’-phosphoadenosine 5’-phosphosulfate synthase and its functional domains. The Journal of biological chemistry. 1998; 273:19311-19320.
24. Venkatachalam KV. Human 3’-phosphoadenosine 5’-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB life.
2003; 55:1-11.
25. Kopriva S, Buchert T, Fritz G, Suter M, Benda R, Schunemann V, Koprivova A, Schurmann P, Trautwein AX, Kroneck PM and Brunold C. The presence of an ironsulfur cluster in adenosine 5’-phosphosulfate reductase separates organisms utilizing adenosine 5’-phosphosulfate and phosphoadenosine 5’-phosphosulfate for sulfate assimilation. The Journal of biological chemistry. 2002; 277:21786-21791.
26. Huttner WB. Protein tyrosine sulfation. Trends in Biochemical Sciences. 1987; 12:361-363.
27. Ada W.Y. Leung1,2, Ian Backstrom1 and Marcel B. Bally, Sulfonation, an underexploited area: from skeletal development to infectious diseases and cancer. Oncotarget, 2016;7:34.
28. Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL and McManus ME. Human sulfotransferases and their role in chemical metabolism. Toxicological sciences. 2006; 90:5-22.
29. Gillet JP and Gottesman MM. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010; 596:47-76.
30. Negishi M, Pedersen LG, Petrotchenko E, Shevtsov S, Gorokhov A, Kakuta Y and Pedersen LC. Structure and function of sulfotransferases. Archives of biochemistry and biophysics. 2001; 390:149-157.
31. Falany CN. Enzymology of human cytosolic sulfotransferases. FASEB journal. 1997; 11:206-216.
32. Falany CN. Sulfation and sulfotransferases. Introduction: changing view of sulfation and the cytosolic sulfotransferases. FASEB journal. 1997; 11:1-2.
33. Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL and Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug metabolism and pharmacokinetics. 2015; 30:3-20.
34. Klaassen CD and Boles JW. Sulfation and sulfotransferases 5: the importance of 3’-phosphoadenosine 5’-phosphosulfate (PAPS) in the regulation of sulfation. FASEB journal. 1997; 11:404-418.
35. Glatt H. Sulfotransferases in the bioactivation of xenobiotics. Chemico-biological interactions. 2000; 129:141-170.
36. Kehoe JW and Bertozzi CR. Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Chemistry & biology. 2000; 7:R57-61.
37. Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, Gerard C, Sodroski J and Choe H. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell. 1999; 96:667-676.
38. Kevin L. Moore The Biology and Enzymology of Protein Tyrosine O-Sulfation. Published, JBC Papers in Press, May 2, 2003. the journal of biological chemistry. 2003; 278:24243–24246.
39. Kakuta, Y., Pedersen, L. G., Pedersen, L. C., and Negishi, M. Trends
Biochem. Sci. 1998; 23:129–130.
40. Ouyang, Y. B., and Moore, K. L. J. Biol. Chem.1998; 273:24770–24774.
41. Liu, J., Louie, S., Hsu, W., Yu, K. M., Hugh, B. N., Jr., and Rosenquist, G. L. Tyrosine sulfation is prevalent in human chemokine receptors important in lung disease. Am. J. Respir. Cell Mol. Biol. 2008; 38:738-743.
42. Koltsova, E., and Ley, K. Tyrosine sulfation of leukocyte adhesion molecules and chemokine receptors promotes atherosclerosis. Arterioscler., Thromb., Vasc. Biol. 2009; 29:1709-1711.
43. Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y. Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proc Natl Acad Sci USA. 2009; 106:15067–15072.
44. Moore KL, Patel KD, Bruehl RE, Fugang L, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP: P-selectin glycoprotein ligand-l mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995; 128:661.
45. Norman KE, Moore K L , McEver RP, Ley K: Leukocyte rolling in V ~ L Y J is mediated by P-selectin glycoprotein ligand-l. Blood. 1995; 86:4417.
46. Moore KL, Patel KD, Bruehl RE, Fugang L, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP: P-selectin glycoprotein ligand-l mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995; 128:661.
47. R.D. Cummings, Structure and function of the selectin ligand PSGL-1, Braz J Med Biol Res. 1999; 32:519-528.
48. Elizabeth E. Gardiner, Mariagrazia De Luca, Tracy McNally, Alan D. Michelson, Robert K. Andrews and Michael C. Berndt. Regulation of P-selectin binding to the neutrophil P-selectin counter-receptor P-selectin glycoprotein ligand-1 by neutrophil elastase and cathepsin G. american society of hematology. 2001; 98: 1440-1447.
49. Liu J, Louie S, Hsu W, Yu KM, Nicholas HB, Jr. And Rosenquist GL. Tyrosine sulfation is prevalent in human chemokine receptors important in lung disease. American journal of respiratory cell and molecular biology. 2008; 38:738-743.
50. Schumacher A, Liebers U, John M, Gerl V, Meyer M, Witt C and Wolff G. P-selectin glycoprotein ligand-1 (PSGL-1) is up-regulated on leucocytes from patients with chronic obstructive pulmonary disease. Clinical and experimental immunology. 2005; 142:370-376.
51. Moore KL. The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem. 2003;278.
52. Westmuckett1 AD, et al. Early post-natal pulmonary failure and primary hypothyroidism in mice with combined TPST-1 and TPST-2 deficiency. Gen Comp Endocrinol. 2008; 156:145–153.
53. Wilkins, P. P., Moore, K. L., McEver, R. P., and Cummings, R. D. J. Biol.
Chem. 1995; 270:22677–22680.
54. Somers, W. S., Tang, J., Shaw, G. D., and Camphausen, R. T. Cell.
2000; 103:467–479
55. Y. Nishimura T. Wakita and H. Shimizu, PLoS Pathog. 2010; 6: 11.
56. Chen, B.H.; Wang, C.C.; Lu, L.Y.; Hung, K.S.; Yang, Y.S. Fluorescence assay for proteinpost-translational tyrosine sulfation. Anal. Bioanal. Chem. 2013; 405:1425–1429.
57. Takamasa Teramoto, etc. Crystal structure of human tyrosylprotein sulfotransferase-2
reveals the mechanism of protein tyrosine sulfation reaction. Nat Commun. 2013; 4: 1572.
58. cuatrecasas, p., wilchek, m., and anfixsen, c. b., proc. nat. acad. sci. u. s. a. 1968; 61:636.
59. cubtrecasas, p., and an&n~en, 6. b:, in s. p. colowick and n. 0. kaplan, methods in enzymology, vol. 21, academic press, new york, in press.
60. pedro cuatrecasas. protein purification by affinity chromatography: derivatizations of agarose and polyacrylamide beads. 1970. the journal of biologic.ua chemistry. 1970; 245:3059-3065.
61. J. MacLennan, Biotechnology (NY). 1995; 13:1180.
62. N.K. Harakas, Bioprocess Technol. 1994; 18:259.
63. Sophia Hober a, Karin Nord b, Martin Linhult c. y. Protein A chromatography for antibody purification. Journal of Chromatography B. 2007; 848:40–47.
64. Ataka M: Protein crystal growth: an approach based on phase diagram determination. Phase Transitions. 1993; 45:205-219.
65. McPherson A: Crystallization of Biological Macromolecules. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1999.
66. Ducruix A, Giege´ R: Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edn 2. Oxford: Oxford University Press; 1999
67. Karaca E, et al. Building Macromolecular Assemblies by Information-driven Docking. Molecular & Cellular Proteomics 9. American Society for Biochemistry and Molecular Biology.2010.
68. Janin, J., Henrick, K., Moult, J., Eyck, L. T., Sternberg, M. J., Vajda, S., Vakser, I., and Wodak, S. J. CAPRI: a Critical Assessment of PRedicted Interactions. Proteins. 2003; 52:2–9.
69. Me´ ndez, R., Leplae, R., De Maria, L., and Wodak, S. J. Assessment of blind predictions of protein-protein interactions: current status of docking methods. Proteins. 2003; 52:51–67.
70. 5.Zacharias, M. Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci. 2003; 12:1271–1282.
71. Zacharias, M. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP. Proteins. 2004; 54:759–767.
72. Chen, R., Li, L., and Weng, Z. ZDOCK: an initial-stage proteindocking algorithm. Proteins. 2003; 52:80–87.
73. Pierce, B., and Weng, Z. ZRANK: reranking protein docking predictions with an optimized energy function. Proteins. 2007; 67:1078–1086.
74. Comeau, S. R., and Camacho, C. J. Predicting oligomeric assemblies: N-mers a primer. J. Struct. Biol. 2005; 150:233–244.
75. Andre´ , I., Bradley, P., Wang, C., and Baker, D. Prediction of the structure of symmetrical protein assemblies. Proc. Natl. Acad. Sci. U.S.A. 2007; 104:17656–17661.
76. Pierce, B., Tong, W., and Weng, Z. M-ZDOCK: a grid-based approach for C-n symmetric multimer docking. Bioinformatics. 2005; 21:1472–1478.
77. de Vries, S. J., van Dijk, A. D., Krzeminski, M., van Dijk, M., Thureau, A., Hsu, V., Wassenaar, T., and Bonvin, A. M. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins. 2007; 69:726–733.
78. De Vries, S. J., Van Dijk, M., and Bonvin, A. M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 2010; 5:883–897.
79. Dominguez, C., Boelens, R., and Bonvin, A. M. J. J. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 2003; 125:1731–1737.
80. Ferna´ ndez-Recio, J., Totrov, M., and Abagyan, R. Identification of protein-protein interaction sites from docking energy landscapes. J. Mol.
Biol. 2004; 335:843–865.
81. Lensink MF, Wodak SJ. Docking and scoring protein interactions: CAPRI 2009. Proteins Struct Funct Bioinform. 2010; 78:3073–3084.
82. D. Petrey, B. Honig, Structural bioinformatics of the interactome, Annu. Rev. Biophys. 2014; 43:193–210.
83. J.P.G.L.M. Rodrigues, A.M.J.J. Bonvin, Integrative computational modeling of protein–protein interactions, FEBS J. 2014; 281:1988–2003.
84. J.P.G.L.M. Rodrigues, A.S.J. Melquiond, E. Karaca, M. Trellet, M. van Dijk, G.C.P. van Zundert, C. Schmitz, S.J. de Vries, A. Bordogna, L. Bonati, P.L. Kastritis, A.M.J.J. Bonvin, Defining the limits of homology modeling in information-driven protein docking, Proteins. 2013; 81:2119–2128.
85. C. Dominguez, R. Boelens, A.M.J.J. Bonvin, HADDOCK: A protein–protein docking approach on biochemical or biophysical information, J. Am. Chem. Soc. 2003; 125:1731–1737.
86. S.J. De Vries, A.D.J. van Dijk, M. Krzeminski, M. van Dijk, A. Thureau, V. Hsu, T. Wassenaar, A.M.J.J. Bonvin, HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets, Proteins. 2007; 69:726–733.
87. J. Janin, Assessing predictions of protein–protein interaction: The CAPRI experiment, Protein Sci. 2005; 14:278–283.
88. S.J. Wodak, Docking, scoring and affinity prediction in CAPRI, Proteins. 2013; 81:2082–2095.
89. X. Daura, K. Gademann, B. Jaun, et al. Peptide folding: when simulation meets experiment, Angewandte Chemie International Edition. 1999; 38:236–240.
90. J.P.G.L.M. Rodrigues, M. Trellet, C. Schmitz, et al. Clustering biomolecular complexes by residue contacts similarity, Proteins: Structure, Function, and Bioinformatics. 2012; 80:1810–1817.
91. Goettsch S, et al. Human TPST1 transmembrane domain triggers enzyme dimerisation and localisation to the Golgi compartment. J. Mol. Biol. 2006; 361:436–449.