研究生: |
佘銘軒 Ming-Shiuan She |
---|---|
論文名稱: |
Formation of Conductive Polymer Nanoarrays through Block Copolymer Templating and Electroplating 利用奈米圖案模版與電鍍形成具有奈米列陣的導電分子之研究 |
指導教授: |
何榮銘
Rong-Ming Ho |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 奈米圖案模版 、導電高分子 、電鍍 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Nanostructured materials have drawn extensive attention because of their unique properties resulting from nanoscale features. One of the convenient ways to generate nanostructured materials is to use patterns with nanoscale textures as templates for the reactions carrying out within the templates (i.e., the concept of nanoreactor). In this study, nanopatterns were obtained from the self-assembly of degradable block copolymers, polystyrene-b-poly(L-lactide) (PS-PLLA) with PLLA hexagonal cylinder (HC) morphology, at which the degradable segment can be scarified to form the nanopatterns with cylindrical pores. Large-scale oriented nanopatterns with perpendicular cylindrical nanopores on conductive substrates (i.e., ITO substrates) were obtained by spin coating. Moreover, the hydrolyzed PS-PLLA templates were stabilized by UV-induced PS-crosslinking so as to enhance the adhesion with substrates and mechanical property for the following electroplating process.
For the establishment of conductive polymer nanoarrays, electroplating was then conducted within the cylindrical nanopores of the nanopatterns prepared. To achieve the high efficiency of electroplating, the pore filling of electrolytes is necessary so that appropriate wetting capability should be fulfilled in order to lead the capillary force-driven process. An appropriate co-solvent, tert-butanol, was used as standard electrolyte solution for the performance of the electrochecmical polymerization of polyanilines within the cylindrical nanopores. Moreover, the formation of templated polyaniline was traced by the in-situ cyclic voltammery analysis. As observed, the growth rate of polyanilines can be effectively controlled by the working voltage of electroplating (the minimum active voltage ~ 0.72 V). As a result, polyaniline nanoarrays with interesting light bulb-like textures can be obtained within the cylindrical nanopores by gentle electroplating at 0.8 V. Because of the non-uniformly diffused field of aniline monomers in the electrolytes, it is difficult to define the average growth rate of polyanilines within each cylindrical nanopore by traditional potentiostatic method. Consequently, advanced pulse plating was carried out to improve diffused efficiency of aniline monomers. Instead of continuous electroplating, the pulse mode applied a periodic electroplating and a diffused sequence so as to equalize concentration gradient of aniline monomers within the cylindrical nanopores. As a result, well-defined conducting polymer nanoarrays can be obtained. Here we demonstrated a novel way for the formation of conducting polymer nanoarrays by the integration of nanopatterning and electroplating; it is appealing in the practical application such as solar cell, flexible electrode and field-emitted display.
1. Brabec, C . J.; Sariciftci, N. S.; Adv. Funct. Mater. 2001, 11 , 15.
2. Russell T. P. et al, science 2000, 290, 2126 .
3. Whitesides, G. M. ; Grzybowski, B. Science 2002, 295, 2418.
4. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
5. Jakubith, S.; Rotermund, H. H.; Engel, W.; Von Oertzen, A.; Ertl, G. Phys. Rev . Lett . 1990, 65, 3013.
6. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
7. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M.; J. A m. Chem. Soc. 2001, 123, 7677.
8. Gast, A. P.; Hall, C. K.; Russel, W. B.; J Colloid ' dInterface Sci 1983, 96, 251.
9. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M.D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000, 287, 465.
10. Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113 .
11. Dagata, J. A. et al, J. Appl. Phys. Lett. 1990, 56 , 2001.
12. D. M. Eigler; E. K. Schweizer; Nature l990, 344, 524.
13. Snow, E. S.; Campbell, P. M.; Perkin, F. K.; Pro. IEEE 1997, 85, 601.
14. Broers, A. N.; Molzen, W.; Cuomo, J.; Wittels, N.; Appl. Phys. Lett.
1976, 29, 596
15. Martin, J. I.; Velez, M.; Morales, R. J. Magn. Mater. 2002, 249, 156
16. Peter A. Crozier; et al.; Nano Letters 2007, 7 , 2395.
17. Ball P. Made to Measure. Biomaterials, 1997. New York, Chapter4, Only natural.
18. Rapaport H; Moller G; Knobler CM; Jensen TR; Kjaer K, Lei serowitz L; Tirrell DA, J Am Chem Soc 2002, 124, 9342 .
19. Rapaport H; Moller G, Knobler CM; Jensen TR; Kjaer K; Lei serowitz L; Tirrell DA., J Am Chem Soc 2002, 124, 9342 .
20. Van Dijk, M. A.; Van den Berg, R., Macromoleules 1995, 28, 6773.
21. Yang, X. M.; Peter, R. D.; Nealey, P. F.; Solak, H. H.; Cerrina, F. Macromolecules 2000, 33, 9575.
22. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
23. De Rosa, C.; Park, C.; Lotz, B.; Wi ttmann, J. C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 4871 .
24. Keller, A.; Pedemonte, E.; Wilmouth, F. M.; Kolloid, Z. Z. Polymer 1970, 238, 385.
25. Keller A.; Pedemonte E; Wlllmouth, FM. Nature, 1970, 225, 538.
26. Honeker, C. C.; Thomas, E. L.; Albalak, R. J. Hajduk, D. A.; Gruner, S. M.; Capel, M. C. Macromolecules 2000, 33, 9395.
27. Hashimoto, T.; Bodycomb, J.; Funaki, Y,; kimishima, K. Macromolecules 1990, 32, 952.
28. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
29. Rong-Ming Ho; Wen-Hsien Tseng, Hu-Wen Fan, Yeo-Wan, polymer 2005, 46, 9362.
30. Russell, T. P. et al. Adv Mater 2002, 14, 1373.
31. Park, M. et al. Science 1997, 276, 1401.
32. Park, M.; Harrison, C.; Chaikin P. M.; Register, R. A.; Adamson, D. H.
Science 1997, 276, 1410.
33. Yot Boontongkong et al, Macromolecules 2002, 35, 3647.
34. Robert W. Zeher et al. Langmuir 1999, 15, 6139.
35. Russell T. P. et al. Nano Lett. 2005, 5, 357.
36. Ho, R-M. et al. Adv Mater 2007, in press.
37. J. C. Hulteen; C. R. Martin; J Mater. Chem. 1997, 7, 1075.
38. A. Huczko et al. A Mater. Sci. Proc. 2000, 70, 365.
39. A. P. Li, F. et al. J Appl. Phys. 1998, 84, 6023.
40. H. Masuda; H. Yamada; M. Satoh; H. Asoh, Appl. Phys. Lett. 1997, 71,
2770.
41. Alain Deronzier, coordination chemistry reviews 1996, 147, 339.
42. Jean Roncali et al. Chem. Rev. 1992, 92, 711.
43. Ambrose, J. F.; Nelson, R. F., J Electrochem. Soc. 1968, 115, 1161.
44. J. Heinze, in E. Steckhan, Electrochemistry IV 1990.
45. Alain Deronzier, Coordination Chemistry Reviews 1994, 147, 339.
46. M. Baizer, Electrochemistry 1974, new york.
47. G. Cauquis, Bull. Soc. Chim. Fr. 1971, 3765.
48. E. M. Genies, J Electroanal Chem 1985, 109, 128.
49. Y. Kim, S.; Cook, S. M.; Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant; D. D. C. Bradley; M. Giles; I. Mcculloch; C. S. Ha; M. Ree, Nat. Mater. 2006, 5, 197.
50. H. Hoppe; N. S. Sariciftci, J. Mater. Chem. 2006, 16, 45.
51. Paul W. M. BLOM, Adv. Mater. 2007, 19, 1551.
52. S. E. Shaheen; C. J. Brabec; N. S. Sariciftci; F. Padinger; T. Fromherz,
J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
53. N. S. Sariciftci; L. Smilowitz; A. J. Heeger; F. Wudl, Science 1992 , 258, 1474.
54. C. J. Brabec; G. Zerza; G. Cerullo; S. De Silvestri; S. Luzzati; J. C. Hummelen; S. Sariciftci, Chem. Phys. Lett. 2001, 340, 232.
55. W. L. Ma; C. Y. Yang; X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
56. G. Li; V. Shrotriya; Y. Yao; Y. Yang, J Appl. Phys. 2005, 98, 043704.
57. C. L. Braun; J. Chem. Phys. 1984, 80, 4157.
58. T. E. Goliber; J. H. Perlstein, J. Chem. Phys. 1984, 80, 4162.
59. G. Li; V. Shrotriya; J. S. Huang; Y. Yao, T. Moriarty; K. Emery; Y. Yang, Nat. Mater. 2005, 4, 864.
60. G. Ridolfi; L. Favaretto; G. Barbarella; P. Samori; N. Camaioni, J Mater. Chem. 2005, 15, 1704.
61. V. D. Mihailetchi; H. X. Xie; B. D. Boer; L. J. A. Koster; P. M. Blom, Adv. Funct. Mater. 2006, 16, 699.
62. Mingdi Yan et al. Adv Mater. 2003, 15, 244.
63. Hung Van Hoang, Chem. Mater. 2006, 18, 1976.
64. Yuehong Pang, Elecrochimica Acta 2007, 52, 6172.
65. Xiaoqing Jiang, Materials Letters 2007, 61, 4687.