研究生: |
彭郁斐 Peng, Yu-Fei |
---|---|
論文名稱: |
探討秀麗隱桿線蟲在dynein和dynactin變異下軸突中UNC-104的聚集與運輸 Axonal UNC-104 clustering and motility in dynein and dynactin C. elegans mutants |
指導教授: |
王歐力
Wagner, Oliver |
口試委員: |
張壯榮
黃兆祺 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 突觸囊泡運輸 、線蟲 、dynein 、dynactin |
外文關鍵詞: | axonal transport, C. elegans, dynein, dynactin |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經,是一高極性細胞,由細胞本體,樹突,以及又長又細的軸突所構成。在軸突中,由微管和微絲這些細胞骨架構成的「走道」,用於運送突觸囊泡和前驅物等等的「貨物」。微管是帶有極性的纖維,其正端指向神經突觸,負端指向神經細胞本體。在微管上,分子馬達負責運送各式各樣的貨物。有兩大類的分子馬達,kinesin和dynein,負責微管的貨物運輸。Kinesin-3 (哺乳類動物中的KIF1A和線蟲中的 UNC-104)主要負責往微管的正端運送突觸囊泡,而dynein則是將其往回運送至負端。Kinesin和dynein的合作構成軸突中的雙向運輸。UNC-104是一單體分子馬達,必須要成為雙體才能作用,而dynein則是必須在連接蛋白dynactin的幫助下,才能作用。雖然目前已經有很多文獻針對軸突中基於kinesin和dynein雙向運動的囊泡進行研究,但我們對於其引發和調控的分子訊息,還是所知甚少。
本研究利用dynein和dynactin的突變株以及RNA干擾,研究線蟲中UNC-104的運動以及其聚集型態。我們的研究結果顯示,dynactin的突變株和RNA干擾會影響順行和逆行雙向的運動,這指出,dynactin在軸突中,對雙向的運動來說都很重要。Dynein heavy chain的突變株也會影響雙向的運動,其中,對順行運動的影響指出dynein和UNC-104有相互作用關係並調節其運動。dlc-1、dli-1、dyrb-1以及dylt-1的RNA干擾實驗也顯示出對順行逆行雙向運動皆有影響。我們進一步分析數據,歸納出dynein對長距離運動有較大的影響,而與順行相比,其影響逆行運動較深。而dyrb-1和dylt-1,不論在長或短距離下,都對分子馬達的運動持續性,有顯著的影響。總結來說,dynein對軸突中,順行以及逆行的運動都很重要。
本實驗在活體中研究dynein和dynactin的突變株以及RNA干擾,提供軸突雙向運輸中,分子馬達和支架蛋白共同合作並產生功能的線索,並顯示出dynein和dynactin對軸突雙向運輸都是不可缺的。
Neurons are highly polarized cells that consist of a cell body (soma), dendrites and a long and thin axon. In axons, cytoskeletal filaments (microtubules or microfilaments) serve as “tracks” for transport directed and processive transport of cargo (as synaptic vesicles and precursors). Microtubules are polarized filaments with their plus-ends directed to the synapse and their minus-ends directed towards the cell body of the neuron. Molecular motors carry different cargos along microtubules. There are two classes of molecular motors responsible for cargo transport along microtubules, the kinesin super family motors and cytoplasmic dynein. Kinesin-3 (KIF1A in mammals and UNC-104 in C. elegans) is the major transporter of synaptic vesicles with net movemetns towards plus-ends while dynein is able to transport cargo back towards the minus-ends. Kinesin collaborates with dynein for axonal bi-directional transports. UNC-104 is a monomeric motor that needs to dimerize to become processive while dynein needs an additional adaptor dynactin that facilitates processivity transport. Though kinesin and dynein-based bi-directional movement of vesicles has been well described in the literature, we still lack knowledge about molecular signals that trigger and regulate the specific type of axonal transport.
In this study, we use several dynein and dynactin mutant/knockdown strains to study the motility and cluster pattern of UNC-104 in C. elegans. Dynactin mutants and RNAi knockdown affect both anterograde and retrograde transport indicated that dynactin plays a role in both directions of axonal transport. Dynein heavy chain mutant also shows effects in both directions, while the effect on anterograde transport indicates that dynein directly interact with UNC-104 to regulate its motility. Knockdown of dlc-1, dli-1, dyrb-1, and dylt-1 mRNA shows as well defects in both anterograde and retrograde transport. By further analyzing the data, we conclude that dynein affects the bi-directional transport on longer run length, and the effect is more serious for retrograde movements. Dryb-1 and dylt-1 are important for motor persistency no matter in short or long ranges. Most of all, dynein is essential for both retrograde and anterograde axonal bi-directional movement.
In this study, mutating as well as knockdown of specific subunits of the dynein/dynactin complex in vivo provides important information how motors and scaffold proteins may cooperatively work and function in axonal bi-directional transport. Our study indicates that dynein and dynactin both play an important role in axonal bi-directional transport.
(1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-2018.
Altun, Z.F.a.H., D.H. (2011). Nervous system, general description. (In WormAtlas.).
Antinone, S.E., and Smith, G.A. (2006). Two modes of herpesvirus trafficking in neurons: membrane acquisition directs motion. Journal of virology 80, 11235-11240.
Bargmann, C.I. (2001). High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome biology 2, REVIEWS1005.
Berezuk, M.A., and Schroer, T.A. (2007). Dynactin enhances the processivity of kinesin-2. Traffic 8, 124-129.
Blangy, A., Arnaud, L., and Nigg, E.A. (1997). Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150. The Journal of biological chemistry 272, 19418-19424.
Brady, S.T., Pfister, K.K., and Bloom, G.S. (1990). A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proceedings of the National Academy of Sciences of the United States of America 87, 1061-1065.
Bramham, C.R., and Wells, D.G. (2007). Dendritic mRNA: transport, translation and function. Nature reviews Neuroscience 8, 776-789.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Brown, A. (2003). Axonal transport of membranous and nonmembranous cargoes: a unified perspective. The Journal of cell biology 160, 817-821.
Chalfie, M., and Sulston, J. (1981). Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Developmental biology 82, 358-370.
Chen, B.L., Hall, D.H., and Chklovskii, D.B. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences of the United States of America 103, 4723-4728.
De Vos, K.J., Grierson, A.J., Ackerley, S., and Miller, C.C. (2008). Role of axonal transport in neurodegenerative diseases. Annual review of neuroscience 31, 151-173.
Duncan, J.E., and Goldstein, L.S. (2006). The genetics of axonal transport and axonal transport disorders. PLoS genetics 2, e124.
Durbin, R.M. (1987). Studies on the development and organisation of the nervous system of C. elegans. (United Kingdom: University of Cambridge).
Gill, S.R., Schroer, T.A., Szilak, I., Steuer, E.R., Sheetz, M.P., and Cleveland, D.W. (1991). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. The Journal of cell biology 115, 1639-1650.
Gross, S.P. (2004). Hither and yon: a review of bi-directional microtubule-based transport. Physical biology 1, R1-11.
Hall, D.H., and Hedgecock, E.M. (1991). Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847.
Hall, D.H., Lints, R., and Altun, Z. (2006). Nematode neurons: anatomy and anatomical methods in Caenorhabditis elegans. International review of neurobiology 69, 1-35.
Hendricks, A.G., Perlson, E., Ross, J.L., Schroeder, H.W., 3rd, Tokito, M., and Holzbaur, E.L. (2010). Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Current biology : CB 20, 697-702.
Hirokawa, N., Nitta, R., and Okada, Y. (2009). The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nature reviews Molecular cell biology 10, 877-884.
Hirokawa, N., Niwa, S., and Tanaka, Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638.
Holleran, E.A., Ligon, L.A., Tokito, M., Stankewich, M.C., Morrow, J.S., and Holzbaur, E.L. (2001). beta III spectrin binds to the Arp1 subunit of dynactin. The Journal of biological chemistry 276, 36598-36605.
Holleran, E.A., Tokito, M.K., Karki, S., and Holzbaur, E.L. (1996). Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. The Journal of cell biology 135, 1815-1829.
Hsu, C.C., Moncaleano, J.D., and Wagner, O.I. (2011). Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-alpha) in C. elegans neurons. Neuroscience 176, 39-52.
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome biology 2, RESEARCH0002.
Kardon, J.R., and Vale, R.D. (2009). Regulators of the cytoplasmic dynein motor. Nature reviews Molecular cell biology 10, 854-865.
Kennedy, S., Wang, D., and Ruvkun, G. (2004). A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645-649.
Kikkawa, M. (2013). Big steps toward understanding dynein. The Journal of cell biology 202, 15-23.
King, S.J., Brown, C.L., Maier, K.C., Quintyne, N.J., and Schroer, T.A. (2003). Analysis of the dynein-dynactin interaction in vitro and in vivo. Molecular biology of the cell 14, 5089-5097.
Klopfenstein, D.R., Tomishige, M., Stuurman, N., and Vale, R.D. (2002). Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347-358.
Kocsis, E., Trus, B.L., Steer, C.J., Bisher, M.E., and Steven, A.C. (1991). Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. Journal of structural biology 107, 6-14.
Kopp, S., Beckung, E., and Gillberg, C. (2010). Developmental coordination disorder and other motor control problems in girls with autism spectrum disorder and/or attention-deficit/hyperactivity disorder. Research in developmental disabilities 31, 350-361.
Kunwar, A., Tripathy, S.K., Xu, J., Mattson, M.K., Anand, P., Sigua, R., Vershinin, M., McKenney, R.J., Yu, C.C., Mogilner, A., et al. (2011). Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport. Proceedings of the National Academy of Sciences of the United States of America 108, 18960-18965.
Ligon, L.A., Tokito, M., Finklestein, J.M., Grossman, F.E., and Holzbaur, E.L. (2004). A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. The Journal of biological chemistry 279, 19201-19208.
Morfini, G.A., Matthew R. Burns, David L. Stenoien, Scott T. Brady (2012). Axonal Transport. In Basic Neurochemistry, Eighth Edition (Elsevier Inc.).
Muller, M.J., Klumpp, S., and Lipowsky, R. (2010). Bidirectional transport by molecular motors: enhanced processivity and response to external forces. Biophysical journal 98, 2610-2618.
Okada, Y., Higuchi, H., and Hirokawa, N. (2003). Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424, 574-577.
Okada, Y., and Hirokawa, N. (1999). A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152-1157.
Okada, Y., and Hirokawa, N. (2000). Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proceedings of the National Academy of Sciences of the United States of America 97, 640-645.
Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., and Hirokawa, N. (1995). The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780.
Pilling, A.D., Horiuchi, D., Lively, C.M., and Saxton, W.M. (2006). Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Molecular biology of the cell 17, 2057-2068.
Roberts, A.J., Kon, T., Knight, P.J., Sutoh, K., and Burgess, S.A. (2013). Functions and mechanics of dynein motor proteins. Nature reviews Molecular cell biology 14, 713-726.
Ross, J.L., Wallace, K., Shuman, H., Goldman, Y.E., and Holzbaur, E.L. (2006). Processive bidirectional motion of dynein-dynactin complexes in vitro. Nature cell biology 8, 562-570.
Roy, S., Winton, M.J., Black, M.M., Trojanowski, J.Q., and Lee, V.M. (2008). Cytoskeletal requirements in axonal transport of slow component-b. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 5248-5256.
Schroer, T.A. (2004). Dynactin. Annual review of cell and developmental biology 20, 759-779.
Schroer, T.A., and Sheetz, M.P. (1991). Two activators of microtubule-based vesicle transport. The Journal of cell biology 115, 1309-1318.
Schuster, M., Kilaru, S., Ashwin, P., Lin, C., Severs, N.J., and Steinberg, G. (2011). Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. The EMBO journal 30, 652-664.
Shubeita, G.T., Tran, S.L., Xu, J., Vershinin, M., Cermelli, S., Cotton, S.L., Welte, M.A., and Gross, S.P. (2008). Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135, 1098-1107.
Stenoien, D.L., and Brady, S.T. (1997). Immunochemical analysis of kinesin light chain function. Molecular biology of the cell 8, 675-689.
Tien, N.W., Wu, G.H., Hsu, C.C., Chang, C.Y., and Wagner, O.I. (2011). Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiology of disease 43, 495-506.
Tomishige, M., Klopfenstein, D.R., and Vale, R.D. (2002). Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263-2267.
Trokter, M., Mucke, N., and Surrey, T. (2012). Reconstitution of the human cytoplasmic dynein complex. Proceedings of the National Academy of Sciences of the United States of America 109, 20895-20900.
Vale, R.D., Malik, F., and Brown, D. (1992). Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. The Journal of cell biology 119, 1589-1596.
Van Waelvelde, H., Oostra, A., Dewitte, G., Van Den Broeck, C., and Jongmans, M.J. (2010). Stability of motor problems in young children with or at risk of autism spectrum disorders, ADHD, and or developmental coordination disorder. Developmental medicine and child neurology 52, e174-178.
Vaughan, K.T., and Vallee, R.B. (1995). Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. The Journal of cell biology 131, 1507-1516.
Wagner, O.I., Esposito, A., Kohler, B., Chen, C.W., Shen, C.P., Wu, G.H., Butkevich, E., Mandalapu, S., Wenzel, D., Wouters, F.S., et al. (2009). Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proceedings of the National Academy of Sciences of the United States of America 106, 19605-19610.
Walter, W.J., Koonce, M.P., Brenner, B., and Steffen, W. (2012). Two independent switches regulate cytoplasmic dynein's processivity and directionality. Proceedings of the National Academy of Sciences of the United States of America 109, 5289-5293.
Waterman-Storer, C.M., Karki, S.B., Kuznetsov, S.A., Tabb, J.S., Weiss, D.G., Langford, G.M., and Holzbaur, E.L. (1997). The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proceedings of the National Academy of Sciences of the United States of America 94, 12180-12185.
Welte, M.A. (2004). Bidirectional transport along microtubules. Current biology : CB 14, R525-537.
Xu, J.a.G., S.P. (2012). Biophysics of dynein in vivo. In Dyneins: Structure, Biology and Disease, S.M. King, ed. (Elsevier).
Zhang, Y. (2009). Properties of tug-of-war model for cargo transport by molecular motors. Physical review E, Statistical, nonlinear, and soft matter physics 79, 061918.