研究生: |
褚明儒 Chu, Ming-Ru |
---|---|
論文名稱: |
「擴散網路」晶片系統神經元的超大型積體電路設計 Design of the Neuron Circuit for the Diffusion Network in VLSI |
指導教授: |
陳新
Hsin Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 擴散網路 、類神經網路 |
外文關鍵詞: | Diffusion Network, DN, Current mode multplier, Sigmoid |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著生醫技術開發迅速,醫學與電機工程的結合需求日漸上升,生物晶片的應用發展日益受到重視,面對生物訊號處於充滿雜訊的環境的條件下,發展對於雜訊影響具有容忍的生醫系統,是一項重要的課題,機率型類神經演算法被提出是具有潛力容忍系統發生運算的錯誤,降低雜訊在積體電路中的干擾影響,可視為實現植入式晶片的發展方向;另外面對生物訊號的連續時變特性,若在類神演算法中具有與時變相關的元素,將能正確的處理及反映生物的訊號。此篇論文的主題將探討,如何利用積體電路設計方式,實現一個時變性機率型類神經網路-擴散網路(Diffusion Network)。
研究中從尋找擴散網路神經元的參數範圍開始。擴散網路在學習時變資料的過程中,透過演算法調變適當的參數值,藉由不同訓練資料的模擬測試,擬定擴散網路在成功學習下所需要的數學參數範圍;再將此數學參數的範圍轉換成設計電路時,所需相對的電壓及電流值範圍,同時選擇實現擴散網路理論神經元所需要的各區塊電路,整合神經元電壓及電流的參數範圍,設定各電路規格,以此規格完成擴散網路神經元電路設計。本論文主要介紹如何將數學網路理論,透過軟體模擬,以積體電路實現的過程,神經元是類神經網路的基本元素,實現神經元的電路後,成為完成擴散網路電路的基礎。
[1] H. Chen , A.F. Murray, "Continuous restricted Boltzmann machine with an implementable training algorithm" IEE proceedings-vision image and signal processing 150 (3): 153-158 JUN 2003
[2] Javier R. Movellan, "A monte Carlo EM Approach for Partially Observable Diffusion Process : Theory and Applications to Neural Network" Neural Computation 14, 1507-1544(2002)
[3] J.M.Cruz and Leon O. Chua, "Hign-Speed High-Density CMOS CNNs" EECS Department University of California, Berkeley Technical Report No. UCB/ERL M91/28 1991
[4] J.M.Cruz, and Leon O. Chua, "A CNN Chip for Connected Component Dection" IEEE Transactions on Circuits and Systems, VOL. 38, NO. 7, JULY 1991
[5] Leon O. Chua, and Lin Yang, "Cellular Neural Networks: Theory" IEEE Transactions on Circuits and Systems, VOL. 35, NO. 10, OCT 1988
[6] F. Diotalevi, M. Valle, G.M. Bo, E. Biglieri, and D.D. Caviglia, "Analog CMOS Current Mode Neural Primitives" IEEE International Symposium on Circuits and System, May 28-31, 2000, Geneva, Switzerland
[7] Chi Hung Lin, and Mohammed Ismail "A 1.8V Low-Power CMOS High-Speed Four Quadrant Multiplier with Rail-to-Rail Differential Input " IEEE International Conference on Electronics, Circuits and Systems,VOL. 1, pp. 37-40, SEPT 1998
[8] N. Saxena, and J. Clark, "A Four-Quadrant CMOS Analog Multiplier for Analog Neural Networks ", IEEE Journal of Solid-State Circuit, VOL. 29, NO. 6, pp. 746-749, 1994
[9] Koichi Tanno, Okihiko Ishizuka, and Zheng Tang, "Four-Quadrant CMOS Current-Mode Multiplier Independent of Device Parameters" IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, VOL. 47, NO. 5, MAY 2000
[10] Ben G. Streetman, Sanjay BanerJee, "Solid State Electronic Devices"
[11] Ryan Lee Bunch, and Sanjay Raman, "Large-Signal Analysis of MOS Varactors in CMOS-Gm LC VCOs" IEEE Journal of Solid-State Circuit, VOL. 38, NO. 8, AUG 2003
[12] Scott A. Wartenberg, Senior Member, IEEE, and John R. Hauser, Fellow, IEEE, "Substrate Voltage and Accumulation-Mode MOS Varactor Capacitance " IEEE Transactions on Electron Devices, VOL. 25, NO. 7, JULY 2005