簡易檢索 / 詳目顯示

研究生: 劉耕谷
Liu, Keng-Ku
論文名稱: 化學氣相沉積法合成水平排列式單壁奈米碳管與高頻特性量測分析
Synthesis of Horizontally Aligned Single-Walled Carbon Nanotubes Arrays by Chemical Vapor Deposition Method and High Frequency Characteristics Analysis
指導教授: 柳克強
Leou, Keh-Chyang
蔡春鴻
Tsai, Chuen-Horng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 128
中文關鍵詞: 奈米碳管化學氣相沉積法高頻特性量測
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單壁奈米碳管為準一維的奈米材料,具有良好的抵抗電致遷移能力、高熱穩定性、高電流密度等特性,因此單壁奈米碳管具有相當大的潛力來取代現在積體電路中以銅為主的金屬連接線,在未來應用於高速元件中。研究指出,奈米碳管於電子元件應用上,在不控制奈米碳管成長方向之下水平成長網路狀(random network)單壁奈米碳管所構成的電子元件,由於碳管與碳管之間因為彼此接觸所造成之接觸阻抗會限制元件之電荷傳導的能力,使元件之載子遷移率遠低於奈米碳管本身固有之載子遷移率,降低了電荷傳輸能力。水平方向排列成長之奈米碳管能有效定向與定位製作奈米碳管電子元件,且能大面積發展,降低碳管之間的接觸阻抗以提高元件傳導能力。
    在奈米碳管的合成方式中,高溫熱裂解化學氣相沉積法被廣泛應用來成長碳管。利用單晶石英基版表面的特殊結構能有效引導奈米碳管沿著某一特定方向排列成長,且石英基板不導電之特性亦能有效降低元件在高頻訊號上的損失。本論文利用熱裂解化學氣相沈積法於ST cut石英基板上合成水平排列式單壁奈米碳管,並以排列式奈米碳管製作電性量測用之試片。ST cut單晶石英基板經過900 ℃高溫長時間退火處理之後,石英晶格表面會呈現特殊之階梯狀結構,有助於引導奈米碳管定向排列成長,而製程所使用之催化劑為二氧化矽(SiO2)/鎳(Ni)之雙層催化劑結構,利用上層SiO2為阻絕層使奈米碳管側向成長,且SiO2之多孔隙結構亦能限制Ni金屬顆粒大小以成長小直徑之單壁奈米碳管。成長碳管之製程氣體為甲烷(CH4)與氫氣(H2)之混合氣體,實驗結果顯示成長溫度與時間會影響奈米碳管的覆蓋性、準直性與品質。製程溫度為900 ℃時所成長出來之奈米碳管長度在10 μm以上,密度約為1 tube/μm,平均直徑約為1.12±0.06 nm,且IG/ID比值在10以上,為高品質之奈米碳管。
    在奈米碳管高頻電性之試片製作上,設計元件之光罩圖形,利用黃光微影製程製作元件,使用熱裂解式化學氣相沉積法在900 ℃、成長時間30分鐘成長水平排列式奈米碳管製作元件,實驗顯示熱退火後處理能有效提高奈米碳管電子元件之電流值,電流值由10-7安培上升到10-6安培,最大可提高34.6倍。奈米碳管之高頻電性量測則是使用向量式網路分析儀來進行S參數(Scattering-parameter)量測,利用校正用之特殊試片結構Dangling Open、Through、Open與具有CNT之試片分別量測其S參數,利用去嵌化(de-embedding)之方式得到奈米碳管之阻抗、電阻與電感特性。


    摘要 i 誌謝 iii 目錄 v 圖目錄 vii 表目錄 xii 第一章 緒論 1 1.1 奈米碳管之固態物理性質 1 1.2 奈米碳管之合成方式 5 1.3 奈米碳管在電子元件上之應用 6 1.4 研究動機 7 第二章 文獻回顧 9 2.1 定向成長之單壁奈米碳管陣列 9 2.2 利用單晶石英基板定向成長單壁奈米碳管 11 2.2.1 不同切割角度之單晶石英基板 12 2.2.2 高溫退火對於石英晶格在定向成長單壁奈米碳管之影響 13 2.2.3 鐵蛋白濃度對於定向成長單壁奈米碳管之影響 15 2.2.4 ST-cut單晶石英定向成長單壁奈米碳管與拉曼光譜 18 2.2.5單壁奈米碳管準直排列程度對於元件導電性質之影響 18 2.3 奈米碳管高頻電性量測 21 2.4 總結 25 第三章 研究方法與實驗設備 26 3.1 研究方法 26 3.2 試片的製備 28 3.2.1 基板的選擇 28 3.2.2 高溫熱退火製程 29 3.2.3 黃光微影製程 30 3.3 光罩圖形之佈局設計 33 3.4 奈米碳管的成長 36 3.4.1 雙層催化劑結構與奈米碳管直徑分佈 38 3.4.2 單壁奈米碳管的特性檢測分析 39 3.5 奈米碳管高頻量測試片的製作 41 3.6 實驗儀器設備 42 3.6.1 電子槍蒸鍍設備 42 3.6.2 高溫熱裂解化學氣相沈積系統 42 3.6.3 掃描式電子顯微鏡 44 3.6.4 微拉曼光譜儀 45 3.6.5 原子力顯微鏡 46 3.6.6 多探針奈米電性量測系統 48 3.6.7 網路分析儀 49 第四章 結果與討論 50 4.1 雙層催化劑結構膜厚與鍍率 50 4.2 在無熱退火之石英基板與矽基板上成長單壁奈米碳管 51 4.3 在熱退火後之石英基板上成長單壁奈米碳管 54 4.4 奈米碳管之拉曼光譜與AFM直徑量測分析 58 4.4.1 奈米碳管之拉曼光譜量測分析 58 4.4.2 奈米碳管之AFM直徑量測分析 61 4.5 製程溫度與時間對於碳管密度與品質之影響 63 4.6 奈米碳管高頻元件之電性量測與分析 71 4.6.1 元件之直流電性量測與分析 72 4.6.2 元件之熱退火效應分析 74 4.6.3 元件之AFM與拉曼光譜量測與分析 77 4.6.4 元件之高頻電性量測與分析 83 第五章 結論與未來展望 98 5.1 結論 98 5.1.1 單晶石英基板上成長水平排列式單壁奈米碳管 98 5.1.2 奈米碳管之物理性質量測與分析 98 5.1.3 熱退火後處理製程對元件電性之影響 99 5.1.4 奈米碳管高頻S參數量測 99 5.2 未來展望 100 參考文獻 101 附錄 105

    1. Kroto, H.W., et al., Buckminsterfullerence. Nature 1985. 318: p. 162-163.
    2. Odom, T.W., et al., Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998. 391(6662): p. 62-64.
    3. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature, 1991. 354(6348): p. 56-58.
    4. Iijima, S. and T. Ichihashi, SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER. Nature, 1993. 363(6430): p. 603-605.
    5. Wong, E.W., P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997. 277(5334): p. 1971-1975.
    6. Falvo, M.R., et al., Bending and buckling of carbon nanotubes under large strain. Nature, 1997. 389(6651): p. 582-584.
    7. Hone, J., et al., Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 1999. 59(4): p. R2514-R2516.
    8. Duesberg, G.S., et al., Growth of isolated carbon nanotubes with lithographically defined diameter and location. Nano Letters, 2003. 3(2): p. 257-259.
    9. Yao, Z., C.L. Kane, and C. Dekker, High-field electrical transport in single-wall carbon nanotubes. Physical Review Letters, 2000. 84(13): p. 2941-2944.
    10. Wei, B.Q., R. Vajtai, and P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 2001. 79(8): p. 1172-1174.
    11. M.S. Dresselhaus, G.D., P. Avouris Carbon Nanotu-bes: Synthesis, Structure, Properties, and Application Springer, Berlin, 2002.
    12. Terrones, M., Science and technology of the twenty-first century: Synthesis, properties and applications of carbon nanotubes. Annual Review of Materials Research, 2003. 33: p. 419-501.
    13. Dai, H.J., Carbon nanotubes: opportunities and challenges. Surface Science, 2002. 500(1-3): p. 218-241.
    14. Zhang, Y.G., et al., Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters, 2001. 79(19): p. 3155-3157.
    15. Joselevich, E. and C.M. Lieber, Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Letters, 2002. 2(10): p. 1137-1141.
    16. Huang, S.M., X.Y. Cai, and J. Liu, Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003. 125(19): p. 5636-5637.
    17. Huang, S.M., et al., Ultralong, Well-Aligned Single-Walled Carbon Nanotube Architectureson Surfaces. Adv. Mater., 2003. 15(19): p. 1651-1655.
    18. Zhou, W.W., et al., Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Letters, 2006. 6(12): p. 2987-2990.
    19. Ismach, A., et al., Atomic-step-templated formation of single wall carbon nanotube patterns. Angewandte Chemie-International Edition, 2004. 43(45): p. 6140-6143.
    20. Han, S., X.L. Liu, and C.W. Zhou, Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. Journal of the American Chemical Society, 2005. 127(15): p. 5294-5295.
    21. Kocabas, C., et al., Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small, 2005. 1(11): p. 1110-1116.
    22. Kocabas, C., et al., Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Letters, 2007. 7(5): p. 1195-1202.
    23. Kang, S.J., et al., High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnology, 2007. 2(4): p. 230-236.
    24. Seo, J.W., et al., Catalytically grown carbon nanotubes: from synthesis to toxicity. Journal of Physics D-Applied Physics, 2007. 40(6): p. R109-R120.
    25. Baughman, R.H., et al., Carbon nanotube actuators. Science, 1999. 284(5418): p. 1340-1344.
    26. Star, A., et al., Electronic detection of specific protein binding using nanotube FET devices. Nano Letters, 2003. 3(4): p. 459-463.
    27. Snow, E.S., et al., Chemical detection with a single-walled carbon nanotube capacitor. Science, 2005. 307(5717): p. 1942-1945.
    28. Chen, J., et al., Bright infrared emission from electrically induced excitons in carbon nanotubes. Science, 2005. 310(5751): p. 1171-1174.
    29. Zhou, Y.X., et al., p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Letters, 2004. 4(10): p. 2031-2035.
    30. Artukovic, E., et al., Transparent and flexible carbon nanotube transistors. Nano Letters, 2005. 5(4): p. 757-760.
    31. Snow, E.S., et al., Random networks of carbon nanotubes as an electronic material. Applied Physics Letters, 2003. 82(13): p. 2145-2147.
    32. Li, W.Z., et al., Large-scale synthesis of aligned carbon nanotubes. Science, 1996. 274(5293): p. 1701-1703.
    33. Yoshihara, K., et al., Fabrication of screen-printed field electron emitter using length-controlled and purification-free carbon nanotubes. Applied Physics Letters, 2007. 91(11).
    34. Snow, E.S., et al., High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Applied Physics Letters, 2005. 86(3).
    35. Jin, Z., et al., Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Letters, 2007. 7(7): p. 2073-2079.
    36. Yuan, D.N., et al., Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Letters, 2008. 8(8): p. 2576-2579.
    37. Kocabas, C., et al., Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. Journal of Physical Chemistry C, 2007. 111(48): p. 17879-17886.
    38. Schlegel, M.L., et al., Structures of quartz (10(1)over-bar-0)- and (10(1)over-bar-1)-water interfaces determined by X-ray reflectivity and atomic force microscopy of natural growth surfaces. Geochimica Et Cosmochimica Acta, 2002. 66(17): p. 3037-3054.
    39. Kocabas, C., M. Shim, and J.A. Rogers, Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. Journal of the American Chemical Society, 2006. 128(14): p. 4540-4541.
    40. Pimparkar, N., et al., Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. Ieee Electron Device Letters, 2007. 28(7): p. 593-595.
    41. Tselev, A., et al., Microwave Impedance Spectroscopy of Dense Carbon Nanotube Bundles. Nano Lett., 2008. 8(1): p. 152-156.
    42. Li, S.D., et al., Carbon nanotube transistor operation at 2.6 GHz. Nano Letters, 2004. 4(4): p. 753-756.
    43. Plombon, J.J., et al., High-frequency electrical properties of individual and bundled carbon nanotubes. Applied Physics Letters, 2007. 90(6).
    44. Rutherglen, C., D. Jain, and P. Burke, rf resistance and inductance of massively parallel single walled carbon nanotubes: Direct, broadband measurements and near perfect 50 Omega impedance matching. Applied Physics Letters, 2008. 93(8).
    45. Lee, W.Y., et al., Lateral growth of single-walled carbon nanotubes across electrodes and the electrical property characterization. Diamond and Related Materials, 2005. 14(11-12): p. 1852-1856.
    46. Li, Y.M., et al., Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. Journal of Physical Chemistry B, 2001. 105(46): p. 11424-11431.
    47. 李威養, 國立清華大學 工程與系統科學系博士論文. (中華民國96年).
    48. http://www.cic.org.tw.
    49. 吳宏益, 國立清華大學 工程與系統科學系碩士論文. (中華民國96年).
    50. 鍾宜良, 國立清華大學 工程與系統科學系碩士論文. (中華民國98年).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE