研究生: |
陳若君 Chen, Jo-Chun |
---|---|
論文名稱: |
Design and Synthesis of α-Ketoamides as Cathepsin S Inhibitors for Potential Anti-Invasion and Anti-Angiogenesis Therapies 設計及合成α-酮醯胺化合物作為可逆型組織蛋白酶S抑制劑及其在抗癌細胞侵襲及抗血管增生之活性評估 |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 283 |
中文關鍵詞: | 抑制劑 |
外文關鍵詞: | inhibitor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究論文主要是設計與合成□-酮醯胺可逆型Cat S的抑制劑,並進一步評估此類抑制劑在抗癌侵襲及抗血管增生之抑制活性。我們建立ㄧ套96孔酵素免疫分析盤合成法,可快速合成且有效率篩選α -羥基醯胺化合物。本論文總共篩選789個α -羥基醯胺化合物,進ㄧ步合成71個□-酮醯胺化合物,其中有51個化合物具有抑制Cat S活性之IC50 小於10 nM,以CL1-5和HUVEC遷移分析進一步篩選出有效化合物113及162。在體外抑制A2058黑色素細胞瘤細胞的侵襲、轉移及內皮細胞血管增生的實驗中,化合物113和162皆表現出極佳的抑制效果。本論文的另一部分是設計及合成小分子活性探針,探針的結構包含四個部分:結合基團、反應基團、鏈接區域及標記基團,將本論文所合成之探針192及193應用於標記癌細胞當中的Cat S,初步測試結果證實探針192可以成功標記基因表達之Cat S。藉由實驗室所發展之磁性奈米粒子可將Cat S由蛋白質混合物中專一性分離出來。
總結本論文成功合成出有效的□-酮醯胺可逆型Cat S的抑制劑,此抑制劑無論是在酵素及體外細胞的試驗當中都可以表現出極佳抑制瘤細胞的侵襲、轉移及內皮細胞血管增生的效果。另外也成功合成出可標記rCat S的小分子活性探針
1. Mohamed, M. M.; Sloane, B. F. Cysteine Cathepsins: Multifunctional Enzymes in
Cancer. Nat. Rev. Cancer. 2006, 6, 764-775.
2. Chang, W-S. W., Wu, H. R., Yeh, C. T., Wu, C. W., Chang, J. Y. Lysosomal Cysteine
Proteinase Cathepsin S as a Potential Target for Anti-Cancer. J. Cancer. Mol. 2007,
3, 5-14.
3. Joyce, J. A.; Baruch, A.; Chehade, K.; Meyer-Morse, N.; Giraudo, E.; Tsai, F.-Y.;
Greenbaum, D. C.; Hager, J. H.; Bogyo, M.; Hanahan, D. Cathepsin Cysteine
Proteases are Effectors of Invasive Growth and Angiogenesis during Multistage
Tumorigenesis. Cancer Cell. 2004, 5, 443-453.
4. Bell-McGuinn, K. M.; Garfall, A. L.; Bogyo, M.; Hanahan, D.; Joyce, J. A.
Inhibition of Cysteine Cathepsin Protease Activity Enhances Chemotherapy
Regimens by Decreasing Tumor Growth and Invasiveness in a Mouse Model of
Multistage Cancer. Cancer Res 2007, 67, 7378-7385.
5. Palermo, C.; Joyce, J. A. Cysteine Cathepsin Proteases as Pharmacological Targets
in Cancer. Trends. Pharmacol. Sci. 2008, 29, 22-28.
6. Brix, K.; Dunkhorst, A.; Mayer, K.; Jordans, S. Cysteine Cathepsins: Cellular
Roadmap to Different Functions. Biochimie. 2008, 90, 194-207.
7. Krueger, S.; Haeckel, C.; Buehling, F.; Roessner, A. Inhibitory Effects of Antisense
Cathepsin B cDNA Transfection on Invasion and Motility in a Human Osteosarcoma
Cell Line. Cancer Res. 1999, 59, 6010-6014.
8. Krueger, S.; Kellner, U.; Buehling, F.; Roessner, A. Cathepsin L antisense
oligonucleotides in a human osteosarcoma cell line: effects on the invasive
phenotype. Cancer Gene Ther. 2001, 8, 522-528.
9. Mohanam, S.; Jasti, S. L.; Kondraganti, S. R.; Chandrasekar, N.; Lakka, S. S.; Kin,
Y.; Fuller, G. N.; Yung, A. W.; Kyritsis, A. P.; Dinh, D. H.; Olivero, W. C.; Gujrati,
M.; Ali-Osman, F.; Rao, J. S. Down-Regulation of Cathepsin B Expression Impairs
the Invasive and Tumorigenic Potential of Human Glioblastoma Cells. Oncogene
2001, 20, 3665-3673.
10. Wang, B.; Sun, J.; Kitamoto, S.; Yang, M.; Grubb, A.; Chapman, H. A.; Kalluri, R.;
Shi, G.-P. Cathepsin S Controls Angiogenesis and Tumor Growth via Matrix-derived
Angiogenic Factors. J. Biol. Chem. 2006, 281, 6020-6029.
11. Jedeszko, C.; Sloane, B. F. Cysteine Cathepsins in Human Cancer. Biol. Chem.
2004, 385, 1017-1027.
12. Gocheva, V.; Zeng, W.; Ke, D.; Klimstra, D.; Reinheckel, T.; Peters, C.; Hanahan,
D.; Joyce, J. A. Distinct Roles for Cysteine Cathepsin Genes in Multistage
Tumorigenesis. Gene. Dev. 2006, 20, 543-556.
13. Joyce, J. A.; Hanahan, D. Multiple Roles for Cysteine Cathepsins in Cancer. cell
cycle 2004, 3, 1516-1519.
14. Leroy, V.; Thurairatnam, S. Cathepsin S inhibitors. Expert Opin. Ther. Pat. 2004, 14,
301-311.
15. Seliger, B.; Maeurer, M. J.; Ferrone, S. Immunol. Today 2000, 21, 455-461.
16. Cresswell, P. Assembly, Transport, and Function of MHC Class II Molecules.
Annual Rev. Immunol. 1994, 12, 259-291.
17. Riese, R. J.; Wolf, P. R.; Bromme, D.; Natkin, L. R.; Villadangos, J. A.; Ploegh, H.
L.; Chapman, H. A. Essential Role for Cathepsin S in MHC Class II Associated
Invariant Chain Processing and Peptide Loading. Immunity 1996, 4, 357-366.
18. Riese, R. J.; Mitchell, R. N.; Villadangos, J. A.; Shi, G. P.; Palmer, J. T.; Karp, E. R.;
DeSanctis, G. T.; Ploegh, H. L.; Chapman, H. A. Cathepsin S Activity Regulates
Antigen Presentation and Immunity. J. Clin. Invest 1998, 101, 2351-2363.
19. Saegusa, K.; Ishimaru, N.; Yanagi, K.; Arakaki, R.; Ogawa, K.; Saito, I.; Katunuma,
N.; and Hayashi, Y. . Cathepsin S Inhibitor Prevents Autoantigen Presentation and
Autoimmunity. J. Clin. Invest. 2002, 110, 361-369.
20. Flannery, T.; Gibson, D.; Mirakhur, M.; McQuaid, S.; Greenan, C.; Trimble, A.;
Walker, B.; McCormick, D.; Johnston, P. G. The Clinical Significance of Cathepsin
S Expression in Human Astrocytomas. Am. J. Pathol. 2003, 163, 175-182.
21. Liuzzo, J. P.; Petanceska, S. S.; Devi, L. A. Neurotrophic Factors Regulate
Cathepsin S in Macrophages and Microglia: A Role in the Degradation of Myelin
Basic Protein and Amyloid Beta Peptide. Mol. Med. 1999, 5, 334-343.
22. Shi, G. P.; Sukhova, G. K.; Kuzuya, M.; Ye, Q.; Du, J.; Zhang, Y.; Pan, J. H.; Lu, M.
L.; Cheng, X. W.; Iguchi, A.; Perrey, S.; Lee, A. M. E.; Chapman, H. A.; Libby, P.
Deficiency of the Cysteine Protease Cathepsin S Impairs Microvessel Growth. Circ.
Res. 2003, 92, 493-500.
23. Gondi, C. S.; Lakka, S. S.; Dinh, D. H.; Olivero, W. C.; Gujrati, M.; and Rao, J. S.
RNAi-Mediated Inhibition of Cathepsin B and uPAR Leads to Decreased Cell
Invasion, Angiogenesis and Tumor Growth in Gliomas. Oncogene 2004, 23,
8486-8496.
24. Fernández, P. L.; Farr, X.; Nadal, A.; Fernández, E.; Peiró, N.; Sloane B. F.; Shi, G.
P.; Chapman, H. A; Campo, E.; Cardesa, A. Expression of Cathepsins B and S in the
Progression of Prostate Carcinoma. Int.J. Cancer 2001, 95, 51-55.
25. Liu, H.; Tully, D. C.; Epple, R.; Bursulaya, B.; Li, J.; Harris, J. L.; Williams, J. A.;
Russo, R.; Tumanut, C.; Roberts, M. J.; Alper, P. B.; He, Y.; Karanewsky, D. S.
Design and Synthesis of Arylaminoethyl Amides as Noncovalent Inhibitors of
Cathepsin S. Part 1. Bioorg. Med. Chem. Lett. 2005, 15, 4979-4984.
26. Biroc, S. L.; Gay, S.; Hummel, K.; Magill, C.; Palmer, J. T; Spencer, D. R.; Sa, S.;
Klaus, L.; Michel, B. A.; Rasnick, D.; Gay, R. E. Cysteine Protease Activity is
Up-Regulated in Inflamed Ankle Joints of Rats with Adjuvant-Induced Arthritis and
Decreases With in Vivo Administration of a Vinyl Sulfone Cysteine Protease
Inhibitor. Arthritis Rheum. 2001, 44, 703-711.
27. Turkenburg, J. P.; Lamers, M. B. A. C.; Brzozowski, A. M.; Wright, L. M.; Hubbard,
R. E.; Sturt, S. L.; Williams, D. H. Structure of a Cys25-->Ser Mutant of Human
Cathepsin S. Acta. Crystallogr. D 2002, 58, 451-455.
28. Menard, R.; Carriere, J.; Laflamme, P.; Plouffe, C.; Khouri, H. E.; Vernet, T.;
Tessier, D. C.; Thomas, D. Y.; Storer, A. C. Contribution of the Glutamine 19 Side
Chain to Transition-State Stabilization in the Oxyanion Hole of Papain.
Biochemistry 1991, 30, 8924-8928.
29. Markt, P.; McGoohan, C.; Walker, B.; Kirchmair, J.; Feldmann, C.; Martino, G. D.;
Spitzer, G.; Distinto, S.; Schuster, D.; Wolber, G.; Laggner, C.; Langer, T. Discovery
of Novel Cathepsin S Inhibitors by Pharmacophore-Based Virtual High-Throughput
Screening. J. Chem. Inf. Model. 2008, 48, 1693-1705.
30. Wang, H-C. Screening and Identification of Novel Human Cathepsin S Inhibitors.
National Tsinh-Hua Unversity Master Thesis.
31. Pauly, T. A.; Sulea, T.; Ammirati, M.; Sivaraman, J.; Danley, D. E.; Griffor, M. C.;
Kamath, A. V.; Wang, I. K.; Laird, E. R.; Seddon, A. P.; Menard, R.; Cygler, M.;
Rath, V. L. Specificity Determinants of Human Cathepsin S Revealed by Crystal
Structures of Complexes. Biochemistry 2003, 42, 3203-3213.
32. Turkenburg, J. P.; Lamers, M. B. A. C.; Brzozowski, A. M.; Wright, L. M.; Hubbard,
R. E.; Sturt S. L. and Williams, D. H. Structure of a Cys25Ser Mutant of Human
Cathepsin S. Acta.Cryst. 2002, 58, 451-455.
33. Hernandez, A. A.; Roush, W. R. Recent Advances in the Synthesis, Design and
Selection of Cysteine Protease Inhibitors. Curr. Opin. Chem. Biol. 2002, 6, 459-465.
34. Lecaille, F. K., J.; Bro¨mme, D. Human and Parasitic Papain-Like Cysteine
Proteases: Their Role in Physiology and Pathology and Recent Developments in
Inhibitor Design. Chem. Rev. 2002, 102, 4459-4488.
35. BRÖMME, D.; Klaus, J. L.; Okamoto, K.; Rasrick, D.; Palmer, J. T. Peptidyl Vinyl
Sulphones: a New Class of Potent and Selective Cysteine Protease Inhibitors: S2P2
Specificity of Human Cathepsin O2 in Comparison With Cathepsins S and L.
Biochem. J. 1996, 315, 85-89.
36. Palmer, J. T.; Rasnick, D.; Jeffrey L.; Klaus, J. L.; Bromme, D. Vinyl Sulfones as
Mechanism-Based Cysteine Protease Inhibitors. J. Med. Chem. 1995, 38,
3193-3196.
37. GourSalin, B. J.; Lachance, P.; Bonneau, P. R.; Storer, A. C.; Kirschke, H.;
Broemme, D. E-64 Analogs as Inhibitors of Cathepsin L and Cathepsin S:
Importance of the S2-P2 Interactions for Potency and Selectivity. Bioorg. Chem.
1994, 22, 227-241.
38. Yasuda, Y.; Kaleta, J.; Brömm, D. The Role of Cathepsins in Osteoporosis and
Arthritis : Rationale for the Design of New Therapeutics. Adv. Drug Deliv. Rev.
2005, 57, 973-993.
39. Ward, Y. D.; Thomson, D. S.; Frye, L. L.; Cywin, C. L.; Morwick, T.; Emmanuel,
M. J.; Zindell, R.; McNeil, D.; Bekkali, Y.; Girardot, M.; Hrapchak, M.; DeTuri, M.;
Crane, K.; White, D.; Pav, S.; Wang, Y.; Hao, M. H.; Grygon, C. A.; Labadia, M. E.;
Freeman, D. M.; Davidson, W.; Hopkins, J. L.; Brown, M. L.; Spero, D. M. Design
and Synthesis of Dipeptide Nitriles as Reversible and Potent Cathepsin S Inhibitors.
J. Med. Chem. 2002, 45, 5471-5482.
40. Patterson, A. W.; Wood, W. J. L.; Hornsby, M.; Lesley, S.; Spraggon, G.; Ellman, J.
A. Identification of Selective, Nonpeptidic Nitrile Inhibitors of Cathepsin S Using
the Substrate Activity Screening Method. J. Med. Chem. 2006, 49, 6298-6307.
41. Irie, O.; Ehara, T.; Iwasaki, A.; Yokokawa, F.; Sakaki, J.; Hirao, H.; Kanazawa, T.;
Teno, N.; Horiuchi, M.; Umemura, I.; Gunji, H.; Masuya, K.; Hitomi, Y.; Iwasaki,
G.; Nonomura, K.; Tanabe, K.; Fukaya, H.; Kosaka, T.; Snell, C. R.; Hallett, A.
Discovery of Selective and Nonpeptidic Cathepsin S Inhibitors. Bioorg. Med. Chem.
Lett. 2008, 18, 3959-3962.
42. Gauthier, J. Y.; Black, W. C.; Courchesne, I.; Cromlish, W.; Desmarais, S.; Houle,
R.; Lamontagne, S.; Li, C. S.; Mass, F.; McKay, D. J.; Ouellet, M.; Robichaud, J.;
Truchon, J.-F.; Truong, V.-L.; Wang, Q.; Percival, M. D. The Identification of
Potent, Selective, and Bioavailable Cathepsin S Inhibitors. Bioorg. Med. Chem. Lett.
2007, 17, 4929-4933.
43. Irie, O.; Yokokawa, F.; Ehara, T.; Iwasaki, A.; Iwaki, Y.; Hitomi, Y.; Konishi, K.;
Kishida, M.; Toyao, A.; Masuya, K.; Gunji, H.; Sakaki, J.; Iwasaki, G.; Hirao, H.;
Kanazawa, T.; Tanabe, K.; Kosaka, T.; Hart, T. W.; Hallett, A. 4-Amino-2-
Cyanopyrimidines: Novel Scaffold for Nonpeptidic Cathepsin S Inhibitors. Bioorg.
Med. Chem. Lett. 2008, 18, 4642-4646.
44. Bekkali, Y.; Thomson, D. S.; Betageri, R.; Emmanuel, M. J.; Hao, M.-H.; Hickey,
E.; Liu, W.; Patel, U.; Ward, Y. D.; Young, E. R. R.; Nelson, R.; Kukulka, A.;
Brown, M. L.; Crane, K.; White, D.; Freeman, D. M.; Labadia, M. E.; Wildeson, J.;
Spero, D. M. Identification of a Novel Class of Succinyl-Nitrile-Based Cathepsin S
Inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 2465-2469.
45. Patterson, A. W.; Wood, W. J.; Hornsby, M.; Lesley, S.; Spraggon, G.; Ellman, J. A.
Identification of Selective, Nonpeptidic Nitrile Inhibitors of Cathepsin S Using the \
Substrate Activity Screening Method. J. Med. Chem 2006, 49, 6298-6307.
46. Li, C. S.; Deschenesa, D.; Desmarais; S.; Falgueyret, S.; Gauthier, J-P.; Yves, J;
Kimmel, D. B.; Légera, S.; Mass, F.; McGrath, M. E.; McKay, D. J.; Percival, M.
D.; Riendeau, D.; Rodan, S. B.; Thérien, M.; Truong, V.-L.; Wesolowski, G.;
Zamboni, R.; Black, W. C. Identification of a Potent and Selective Non-Basic
Cathepsin K Inhibitor. Bioorg. Med. Chem. Lett. 2006, 16, 1985-1989.
47. Gauthier, J. Y.; Black, W. C.; Courchesne, I.; Cromlish, W.; Desmarais, S.; Houle,
R.; Lamontagne, S.; Li, C. S.; Mass, F.; McKay, D. J.; Ouellet, M.; Robichaud, J.;
Truchon, J.-F.; Truong, V.-L.; Wang, Q.; Percival, M. D. The Identification of
Potent, Selective, and Bioavailable Cathepsin S Inhibitors. Bioorg. Med. Chem. Lett.
2007, 17, 4929-4933.
48. Altmann, E.; Aichholz, R.; Betschart, C.; Buhl, T.; Green, J.; Irie, O.; Teno, N.;
Lattmann, R.; Blomley, M. T.; Missbach, M. 2-Cyano-pyrimidines: A New
Chemotype for Inhibitors of the Cysteine Protease Cathepsin K. J. Med. Chem.
2007, 50, 591-594.
49. Ayesa, S.; Lindquist, C.; Agback, T.; Benkestock, K.; Classon, B.; Henderson, I.;
Hewitt, E.; Jansson, K.; Kallin, A.; Sheppard, D.; Samuelsson, B. Solid-Phase
Parallel Synthesis and SAR of 4-Amidofuran-3-one Inhibitors of Cathepsin S: Effect
of Sulfonamides P3 Substituents on Potency and Selectivity. Bioorg. Med. Chem.
2009, 17, 1307-1324.
50. Stroup, G. B.; Lark, M. W.; Veber, D. F.; Bhattacharyya, A.; Blake, S.; Dare, L. C.;
Erhard, K. F.; Hoffman, S. J.; James, I. E.; Marquis, R. W.; Ru, Y. U.; Vasko-Moser,
J. A.; Smith, B. R.; Tomaszek, T.; Gowen, M. Potent and Selective Inhibition of
Human Cathepsin K Leads to Inhibition of Bone Resorption In Vivo in a Nonhuman
Primate. J. Bone Miner. Res. 2001, 16, 1739-1746.
51. Wei, J.; Pio, B. A.; Cai, H.; Meduna, S. P.; Sun, S.; Gu, Y.; Jiang, W.; Thurmond, R.
L.; Karlsson, L.; Edwards, J. P. Pyrazole-Based Cathepsin S Inhibitors with
Improved Cellular Potency. Bioorg. Med. Chem. Lett. 2007, 17, 5525-5528.
52. Gustin, D. J.; Sehon, C. A.; Wei, J.; Cai, H.; Meduna, S. P.; Khatuya, H.; Sun, S.;
Gu, Y.; Jiang, W.; Thurmond, R. L.; Karlsson, L.; Edwards, J. P. Discovery and SAR
Studies of a Novel Series of Noncovalent Cathepsin S Inhibitors. Bioorg. Med.
Chem. Lett. 2005, 15, 1687-1691.
53. Pharm., N. 2001.
54. Breitenbucher, J. G.; Cai, H.; Edwards, J. P., Grice, C. A.; Gu, Y.; Gustin, D. J.;
Karlsson, L.; Khatuya, H.; Meduna, S. P.; Pio, B. A.; Sun, S.; Tays, K. L.;
Thurmond, R. L.; Wei, J. Preparation of
3-Phenyl-4,5,6,7-Tetrahydropyrazolo[4,3-c]pyridines as Cathepsin S Inhibitors
for Treating Allergies. PCT Int. Appl. 2002, 125 pp. WO 2002020012.
55. Cai, H.; Edwards, J. P.; Meduna, S. P.; Pio, B. A.; Wei, J. Substituted and/or Fused
Pyrazoles, Particularly Indolylpiperidinylpropyl-Substituted Pyrazolopyridines,
Useful as Cathepsin S Inhibitors, and Their Pharmaceutical Compositions and
Use as Immunosuppressants. PCT Int. Appl. 2002, 119 pp. WO 2002014317
56. Breitenbucher, J. G.; Cai, H.; Edwards, J. P.; Grice, C. A.; Gustin, D. J.; Khatuya, H.;
Meduna, S. P.; Pio, B. A.; Tays, K. L.; Wei, J. Substituted and/or Fused Pyrazoles,
Particularly Piperazinylpropyl-Substituted Pyrazolopyridines, Useful as Cathepsin S Inhibitors, and Their Pharmaceutical Compositions and Use as Immunosuppressants. PCT Int. Appl. 2002, 161 pp. WO 2002014314
57. Thurmond, R. L.; Beavers, M. P.; Cai, H.; ; Meduna, S. P. G., D. J.; Sun, S.; ;
Almond, H. J. K., L.; ; Edwards, J. P. Nonpeptidic, Noncovalent Inhibitors of the
Cysteine Protease Cathepsin S. J. Med. Chem. 2004, 47, 4799-4801.
58. Altmann, E.; Green, J.; Tintelnot-Blomley, M. Arylaminoethyl Amides as Inhibitors
of the Cysteine Protease Cathepsin K--Investigating P1' Substituents. Bioorg.
Med. Chem. Lett. 2003, 13, 1997-2001.
59. Alper, P. B.; Liu, H.; Chatterjee, A. K.; Nguyen, K. T.; Tully, D. C.; Tumanut, C.; Li,
J.; Harris, J. L.; Tuntland, T.; Chang, J.; Gordon, P.; Hollenbeck, T.; Karanewsky, D.
S. Arylaminoethyl Amides as Noncovalent Inhibitors of Cathepsin S. Part 2:
Optimization of P1 and N-Aryl. Bioorg. Med. Chem. Lett. 2006, 16, 1486-1490.
60. Tully, D. C.; Liu, H.; Alper, P. B.; Chatterjee, A. K.; Epple, R.; Roberts, M. J.;
Williams, J. A.; Nguyen, K. T.; Woodmansee, D. H.; Tumanut, C.; Li, J.; Spraggon,
G.; Chang, J.; Tuntland, T.; Harris, J. L.; Karanewsky, D. S. Synthesis and
Evaluation of Arylaminoethyl Amides as Noncovalent Inhibitors of Cathepsin S.
Part 3: Heterocyclic P3. Bioorg. Med. Chem. Lett. 2006, 16, 1975-1980.
61. Tully, D. C.; Liu, H.; Chatterjee, A. K.; Alper, P. B.; Williams, J. A.; Roberts, M. J.;
Mutnick, D.; Woodmansee, D. H.; Hollenbeck, T.; Gordon, P.; Chang, J.; Tuntland,
T.; Tumanut, C.; Li, J.; Harris, J. L.; Karanewsky, D. S. Arylaminoethyl Carbamates
as a Novel Series of Potent and Selective Cathepsin S Inhibitors. Bioorg. Med.
Chem.Lett. 2006, 16, 5107-5111.
62. Li, Z.; Vilain, A-C. O.; Patil, G. S.; Chu, D-L.; Foreman, J. E.; Eveleth, D. D.;
Powers, J. C. Novel Peptidyl alpha-Keto Amide Inhibitors of Calpains and Other
Cysteine Proteases. J. Med. Chem 1996, 39, 4089-4098.
63. Li, Z.; Patil, G. S.; Golubski, Z. E.; Hori, H.; Tehrani, K.; Foreman, J. E.; Eveleth, D.
D.; Bartus, R. T.; Powers, J. C. Peptide Alpha-Keto Ester, Alpha-Keto Amide,
and Alpha-Keto Acid Inhibitors of Calpains and Other Cysteine Proteases. J. Med.
Chem 1993, 36, 3472-3480.
64. Otto, H. H.; Schirmeister, T. Cysteine Proteases and Their Inhibitors. Chem. Rev.
1997, 97, 133-172.
65. Donkor, I. O.; Assefa, H.; Liu, J. Structural Basis for the Potent Calpain Inhibitory
Activity of Peptidyl α-Ketoacids. J. Med. Chem. 2008, 51, 4346-4350.
66. Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett, R.; Carroll, R. M.; Straub, J.
A.; Tkacz, J. N. W., C.; Musso, G. F. Stereospecific Synthesis of Peptidyl a-Keto
Amides as Inhibitors of Calpain. J. Med. Chem 1994, 37, 2918-2929.
67. Tavares, F. X.; Boncek, V.; Deaton, D. N.; Hassell, A. M.; Long, S. T.; Miller, A. B.;
Payne, A. A.; Miller, L. R.; Shewchuk, L. M.; Wells-Knecht, K.; Willard, D. H.;
Wright, L. L.; Zhou, H.-; Q. Design of Potent, Selective, and Orally Bioavailable
Inhibitors of Cysteine Protease Cathepsin K. J. Med. Chem 2004, 47, 588-599.
68. Bartus, R. T. B., K. L.; Heiser, A. D.; Sawyer, S. D.; Dean, R. L.; Elliot, P. J.; Straub,
J. A. Postischemic administration of AK275, a Calpain Inhibitor, Provides
Substantial Protection Against Focal Ischemic Brain Damage. J. Cereb. Blood Flow
Metab. 1994, 14, 537-544.
69. Bogen, S.; Saksena, A. K.; Arasappan, A.; Gu, H.; Njoroge, F. G.; Girijavallabhan,
V.; Pichardo, J.; Butkiewicz, N.; Prongay, A.; Madison, V. Hepatitis C virus NS3-4A
serine protease inhibitors: Use of a P2-P1 Cyclopropyl Alanine Combination for
Improved Potency. Bioorg. Med. Chem. Lett. 2005, 15, 4515-4519.
70. Dömling, A. U., I. Multicomponent Reactions with Isocyanides. Angew. Chem.
2000, 39, 3168-3210.
71. Passerini, M. S., L. . Gazz. Chim. Ital. 1921, 51, 126-129.
72. Li, Z.; Vilain, A-C. O; Patil, G. S.; Chu, D. L.; Foreman, J. E.; Eveleth, D. D.;
Powers, J. C. Novel Peptidyl α-Keto Amide Inhibitors of Calpains and Other
Cysteine Proteases. J. Med. Chem 1996, 39, 4089-4098.
73. Han, W.; Hu, Z.; Jiang, X.; Decicco, C. P. [alpha]-Ketoamides, [alpha]-Ketoesters
and [alpha]-Diketones as HCV NS3 Protease Inhibitors. Bioorg. Med. Chem. Lett.
2000, 10, 711-713.
74. Semple, J. E.; Rowley, D. C.; Brunck, T. K.; Ripka, W. C. Synthesis and Biological
Activity of P2-P4 Azapeptidomimetic P1-Argininal and P1-Ketoargininamide
Derivatives: a Novel Class of Serine Protease Inhibitors. Bioorg. Med. Chem. Lett.
1997, 7, 315-320.
75. Adang, A. E. P.; de Man, A. P. A.; Vogel, G. M. T.; Grootenhuis, P. D. J.; Smit, M. J.;
Peters, C. A. M.; Visser, A.; Rewinkel, J. B. M.; Dinther, T. v.; Lucas, H.; Kelder, J.;
Aelst, S. v.; Meuleman, D. G.; van Boeckel, C. A. A. Unique Overlap in the
Prerequisites for Thrombin Inhibition and Oral Bioavailability Resulting in Potent
Oral Antithrombotics. J. Med. Chem 2002, 45, 4419-4432.
76. Donkor, I. O.; Han, J.; Zheng, X. Design, Synthesis, Molecular Modeling Studies,
and Calpain Inhibitory Activity of Novel r-Ketoamides Incorporating Polar Residues
at the P1'-Position. J. Med. Chem. 2004, 47, 72-79.
77. Han, W.; Hu, Z.; Jiang, X.; Wasserman, Z. R.; Decicco, C. P. Glycine [alpha]-
Ketoamides as HCV NS3 Protease Inhibitors. Bioorg. Med. Chem. Lett. 2003, 13,
1111-1114.
78. Tavares, F. X. D., D. N.; Miller, A. B.; Miller, L. R.; Wright, L. L.; Zhou, H. Q.
Potent and Selective Ketoamide-Based Inhibitors of Cysteine Protease, Cathepsin K.
J. Med. Chem. 2004, 47, 5049-5056.
79. Tavares, F. X. D., D. N.; Miller, J. R.; Wright, L. L. Ketoamide-Based Inhibitors of
Cysteine Protease, Cathepsin K: P3 Modifications. J. Med. Chem 2004, 47,
5057-5068.
80. Barrett, D. G.; Catalano, J. G.; Deaton, D. N.; Long, S. T.; McFadyen, R. B.; Miller,
A. B.; Miller, L. R.; Wells-Knecht, K. J.; Wright, L. L. A Structural Screening
Approach to Ketoamide-Based Inhibitors of Cathepsin K. Bioorg. Med. Chem. Lett.
2005, 15, 2209-2213.
81. Barrett, D. G.; Catalano, J. G.; Deaton, D. N.; Hassell, A. M.; Long, S. T.; Miller, A.
B.; Miller, L. R.; Ray, J. A.; Samano, V.; Shewchuk, L. M.; Wells-Knecht, K. J.;
Willard Jr, D. H.; Wright, L. L. Novel, Potent P2-P3 Pyrrolidine Derivatives of
Ketoamide-Based Cathepsin K Inhibitors. Bioorg. Med. Chem. Lett. 2006, 16,
1735-1739.
82. Semple, J. E.; Levy, O. E.; Minami, N. K.; Owens, T. D.; Siev, D. V. Novel, Potent
and Selective Chimeric FXa Inhibitors Featuring Hydrophobic p1-Ketoamide
Moieties. Bioorg. Med. Chem. Lett. 2000, 10, 2305-2309.
83. Semple, J. E.; Owens, T. D.; Nguyen, K.; Levy, O. E. New Synthetic Technology for
Efficient Construction of a-Hydroxy-b-amino Amides via the Passerini Reaction.
Org. Lett. 2000, 2, 2769-2772.
84. Bihovsky, R.; Tao, M.; Mallamo, J. P.; Wells, G. J. 1,2-Benzothiazine 1,1-Dioxide
[alpha]-Ketoamide Analogues as Potent Calpain I Inhibitors. Bioorg. Med. Chem.
Lett. 2004, 14, 1035-1038.
85. Barrett, D. G.; Catalano, J. G.; Deaton, D. N.; Hassell, A. M.; Long, S. T.; Miller, A.
B.; Miller, L. R.; Shewchuk, L. M.; Wells-Knecht, K. J.; Willard Jr, D. H.; Wright,
L. L. Potent and Selective P2-P3 Ketoamide Inhibitors of Cathepsin K with Good
Pharmacokinetic Properties via Favorable P1', P1, and/or P3 Substitutions. Bioorg.
Med. Chem. Lett. 2004, 14, 4897-4902.
86. Catalano, J. G.; Deaton, D. N.; Long, S. T.; McFadyen, R. B.; Miller, L. R.; Payne, J.
A.; Wells-Knecht, K. J.; Wright, L. L. Design of Small Molecule Ketoamide-Based
Inhibitors of Cathepsin K. Bioorg. Med. Chem. Lett. 2004, 14, 719-722.
87. Oaksmith, J. M.; Peters, U.; Ganem, B. Three-Component Condensation Leading to
β-Amino Acid Diamides: Convergent Assembly of β-Peptide Analogues. J. Am.
Chem. Soc. 2004, 126, 13606-13607.
88. Bogen, S. L.; Arasappan, A.; Bennett, F.; Chen, K.; Jao, E.; Liu, Y. T.; Lovey, R. G.;
Venkatraman, S.; Pan, W.; Parekh, T.; Pike, R. E.; Ruan, S.; Liu, R.; Baroudy, B.;
Agrawal, S.; Chase, R.; Ingravallo, P.; Pichardo, J.; Prongay, A.; Brisson, J. M.;
Hsieh, T. Y.; Cheng, K. C.; Kemp, S. J.; Levy, O. E.; Lim-Wilby, M.; Tamura, S. Y.;
Saksena, A. K.; Girijavallabhan, V.; Njoroge, F. G. Discovery of SCH446211
(SCH6): A New Ketoamide Inhibitor of the HCV NS3 Serine Protease and HCV
Subgenomic RNA Replication. J. Med. Chem. 2006, 49, 2750-2757.
89. Manfredini, S.; Vertuani, S.; Pavan, B.; Vitali, F.; Scaglianti, M.; Bortolotti, F.;
Biondi, C.; Scatturin, A.; Prasad, P.; Dalpiaz, A. Design, Synthesis and In Vitro
Evaluation on HRPE Cells of Ascorbic and 6-Bromoascorbic Acid Conjugates with
Neuroactive Molecules. Bioorg. Med. Chem. 2004, 12, 5453-5463.
90. Vilaivan, T. A Rate Enhancement of Tert-Butoxycarbonylation of Aromatic Amines
with Boc2O in Alcoholic Solvents. Tetrahedron Lett. 2006, 47, 6739-6742.
91. Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett, R.; Carroll, R. M.; Straub, J.
A.; Tkacz, J. N.; Wu, C.; Musso, G. F. Stereospecific Synthesis of
Peptidyl .alpha.-Keto Amides as Inhibitors of Calpain. J. Med. Chem. 2002, 37,
2918-2929.
92. Banfi, L.; Guanti, G.; Riva, R.; Basso, A.; Calcagno, E. Short Synthesis of Protease
Inhibitors via Modified Passerini Condensation of N-Boc-[alpha]-Aminoaldehydes.
Tetrahedron Lett. 2002, 43, 4067-4069.
93. Chen, K. X. N., F. G.; Arasappan, A.; Venkatraman, S.; Vibulbhan, B.; Yang, W.;
Parekh, T. N.; Pichardo, J.; Prongay, A.; Cheng, K-C.; Butkiewicz, N.; Yao, N.;
Madison, V.; Girijavallabha, V. Novel Potent Hepatitis C Virus NS3 Serine Protease
Inhibitors Derived from Proline-Based Macrocycles. J. Med. Chem. 2006, 49,
995-1005.
94. Carreno, M. C.; Sanz-Cuesta, M. J.; Colobert, F.; Solladie, G. Synthesis and
Trimethylaluminum Additions on γ-Hydroxy-δ-Sulfinyl and Sulfonyl Enoates.
Org. Lett. 2004, 6, 3537-3540.
95. Chen, K. X.; Njoroge, F. G.; Pichardo, J.; Prongay, A.; Butkiewicz, N.; Yao, N.;
Madison, V.; Girijavallabhan, V. Potent 7-Hydroxy-1,2,3,4-Tetrahydroisoquinoline
-3-carboxylic Acid-Based Macrocyclic Inhibitors of Hepatitis C Virus NS3 Protease.
J. Med. Chem. 2005, 49, 567-574.
96. Tavares, F. X.; Deaton, D. N.; Miller, L. R.; Wright, L. L. Ketoamide-Based
Inhibitors of Cysteine Protease, Cathepsin K: P3 Modifications. J. Med. Chem.
2004, 47, 5057-5068.
97. Ju, L.; Lippert, A. R.; Bode, J. W. Stereoretentive Synthesis and Chemoselective
Amide-Forming Ligations of C-Terminal Peptide α-Ketoacids. J. Am. Chem. Soc.
2008, 130, 4253-4255.
98. Siwicka, A.; Wojtasiewicz, K.; Rosiek, B.; Leniewski, A.; Maurin, J. K.; Czarnocki,
Z. Diastereodivergent Synthesis of 2,5-Diketopiperazine Derivatives of [beta]-
Carboline and Isoquinoline From l-Amino acids. Tetrahedron: Asymmetry 2005, 16,
975-993.
99. Andrés, J. M.; Pedrosa, R.; Pérez-Encabo, A. Diastereoselective Syntheses of
2-Amino Propargyl Alcohols. Chiral Building Blocks for Enantiopure Amino
[gamma]-Lactones and 5-Hydroxy-Piperidinone Derivatives. Tetrahedron Lett.
2006, 47, 5317-5320.
100. Alcaide, B.; Almendros, P.; Alonso, J. M. Synthesis of Optically Pure Highly
Functionalized γ-Lactams via 2-Azetidinone-Tethered Iminophosphoranes.
J. Org. Chem. 2004, 69, 993-996.
101. Hillaert, U.; Boldin-Adamsky, S.; Rozenski, J.; Busson, R.; Futerman, A. H.;
Calenbergh, S. V. Synthesis and Biological Evaluation of Novel PDMP Analogues.
Bioorg. Med. Chem. 2006, 14, 5273-5284.
102. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, k. B. A Greatly Improved
procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J.
Org. Chem. 1981, 46, 3936-3938.
103. Harbeson, S. L.; Abellerira, S. M.; Akiyama, A.; Barrett III, R.; Carroll, R. M.;
Straub, J. A.; Tkacz, J. N.; Wu, C.; Musso, G. F. Stereospecific Synthesis of
Peptidyl Alpha-Keto Amides as Inhibitors of Calpain. J. Med. Chem. 1994, 37,
2918-2929.
104. Cravatt, B. F.; Sorensen, E. J. Chemical Strategies for the Global Analysis of Protein
Function. Curr. Opin. Chem. Biol. 2000, 4, 663-668.
105. Anna, E. S.; Benjamin, F. C. Chemical Strategies for Activity-Based Proteomics.
ChemBioChem 2004, 5, 41-47.
106. Carolyn, I. P.; Matthew, B. Proteomics Meets Microbiology: Technical Advances in
the Global Mapping of Protein Expression and Function. Cellular Microbiology
2005, 7, 1061-1076.
107. Jeffery, D. A.; Bogyo, M. Chemical Proteomics and its Application to Drug
Discovery. Curr. Opin. Biotech. 2003, 14, 87-95.
108. Patterson, S. D.; Aebersold, R. H. Proteomics: the First Decade and Beyond. Nat.
Genet. 2003, 33, 311-323.
109. Pandey, A.; Mann, M. . Proteomics to study genes and genomes. Nature 2000, 405,
837-846.
110. O’Farrell, P. H. High Resolution Two-Dimensional Electrophoresis of Proteins. J.
Biol. Chem. 1975, 250, 4007–4021.
111. Washburn, M. P.; Wolters, D.; Yates, J. R. Large-Scale Analysis of the Yeast
Proteome by Multidimensional Protein Identification Technology. Nat. Biotechnol.
2001, 19, 242-247.
112. Gygi, S. P.; Rist, B.; Gerber, S.A.; Turecek, F.; Gelb, M. H.; Aebersold, R.
Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity
Tags. Nat. Biotechnol. 1999, 17, 994–999.
113. Speers, A. E.; Cravatt, B. F. Chemical Strategies for Activity-Based Proteomics.
ChemBioChem 2004, 5, 41-47.
114. Burbaum, J.; Tobal, G. M. Proteomics in Drug Discovery. Curr. Opin. Chem. Biol
2002, 6, 427-433.
115. Sadaghiani, A. M.; Verhelst, S. H. L.; Bogyo, M. Tagging and Detection Strategies
for Activity-Based Proteomics. Curr. Opin. Chem. Biol. 2007, 11, 20-28.
116. Borodovsky, A.; Ovaa, H.; Kolli, N.; Gan-Erdene, T.; Wilkinson, K. D.; Ploegh, H.
L.; Kessler, B. M. Chemistry-Based Functional Proteomics Reveals Novel Members
of the Deubiquitinating Enzyme Family. chem. Biol. 2002, 9, 1149-1159.
117. Greenbaum, D.; Baruch, A.; Hayrapetian, L.; Darula, Z.; Burlingame, A.;
Medzihradszky, K. F.; Bogyo, M. Chemical Approaches for Functionally Probing
the Proteome. Mol. Cell. Proteomics 2002, 1, 60-68.
118. Vsevolod, V. R.; Luke, G. G.; Valery, V. F.; Sharpless, K. B. A Stepwise Huisgen
Cycloaddition Process: Copper(I)-Catalyzed Regioselective 'ligation' of Azides and
Terminal Alkynes. Angew. Chem. In. Ed. 2002, 114, 2708-2711.
119. Speers, A. E. A., G. C.; Cravatt, B. F. Activity-Based Protein Profiling in Vivo Using
a Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition. J. Am. Chem. Soc.
2003, 125, 1686-1687.
120. Sieber, S. A.; Niessen, S.; Hoover, H. S.; Cravatt, B. F. Proteomic Profiling of
Metalloprotease Activities with Cocktails of Active-Site Probes. Nat. Chem. Biol.
2006, 2, 274-281.
121. Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified Staudinger
Reaction. Science 2000, 287, 2007-2010.
122. Huib, O.; Paul, F. v. S.; Benedikt, M. K.; Michiel, A. L.; Edda, F.; Adrianus, M. C.
H. v. d. N.; Paul, J. G.; Gijsbert, A. v. d. M.; Hidde, L. P.; Herman, S. O. Chemistry
in Living Cells: Detection of Active Proteasomes by a Two-Step Labeling
Strategy. Angew. Chem. Int. Ed. 2003, 42, 3626-3629.
123. Berkers, C. R.; Verdoes, M.; Lichtman, E.; Fiebiger, E.; Kessler, B. M.; Anderson,
K. C.; Ploegh, H. L.; Ovaa, H.; Galardy, P. J. Activity Probe for In Vivo Profiling of
the Specificity of Proteasome Inhibitor Bortezomib. Nat. Methods 2005, 2, 357-362.
124. Evans, M. J.; Cravatt, B. F. Mechanism-Based Profiling of Enzyme Families. Chem.
Rev. 2006, 106, 3279-3301.
125. Bouma, B. N.; Miles, L. A.; Beretta, G.; Griffin, J. H. . Human Plasma Prekallikrein.
Studies of its Activation by Activated Factor XII and of its Inactivation by
Diisopropyl Phosphofluoridate. Biochemistry 1980, 19, 1151-1160.
126. Liu, Y.; Patricelli, M. P.; Cravatt, B. F. Activity-Based Protein Profiling: The Serine
Hydrolases. Proceedings of the National Academy of Sciences of the United States of
America 1999, 96, 14694-14699.
127. Kidd, D.; Liu, Y.; Cravatt, B. F. . Profiling Serine Hydrolase Activities in Complex
Proteomes. Biochemistry 2001, 40, 4005-4015.
128. Matthew, P. P.; Dan, K. G.; Lisa, M. S.; Jonathan, J. B. Direct visualization of serine
hydrolase activities in complex proteomes using fluorescent active site-directed
probes. Proteomics 2001, 1, 1067-1071.
129. Kato, D.; Boatright, K. M.; Berger, A. B.; Nazif, T.; Blum, G.; Ryan, C.; Chehade, K.
A. H.; Salvesen, G. S.; Bogyo, M. Activity-based probes that target diverse cysteine
protease families. Nat. Chem. Biol. 2005, 1, 33-38.
130. Anna, B.; Huib, O.; Wim, J. N. M.; Emily, S. V.; Matthew, S. B.; Brian, G. H.;
Hidde, L. P.; Benedikt, M. K.; Herman, S. O. Small-Molecule Inhibitors and Probes
for Ubiquitin- and Ubiquitin-Like-Specific Proteases. ChemBioChem 2005, 6,
287-291.
131. Hemelaar, J.; Galardy, P. J.; Borodovsky, A.; Kessler, B. M.; Ploegh,; H. L.; Ovaa,
H. Chemistry-Based Functional Proteomics: Mechanism-Based Activity-Profiling
Tools for Ubiquitin and Ubiquitin-like Specific Proteases. J. Proteome Res. 2004, 3,
268-276.
132. David, J. V.; Carolyn, R. B. A Strategy for Functional Proteomic Analysis of
Glycosidase Activity from Cell Lysates. Angew. Chem. In. Edit. 2004, 43,
5338-5342.
133. Davies, G. J.; Henrissat, B. Structural enzymology of carbohydrate-active enzymes:
implications for the post-genomic era. Biochem. Soc. Trans. 2002, 30, 291-297.
134. Kumar, S.; Zhou, B.; Liang, F.; Wang, W. Q.; Huang, Z.; Zhang, Z. Y. Activity-
based probes for protein tyrosine phosphatases. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 7943-7948.
135. Hanada, K.; Tamai, M.; Yamagishi, M.; Ohmura, S.; Sawada, J.; Tanaka, I. Isolation
and Characterization of E-64, a New Thiol Protease Inhibitor. Agric. Biol. Chem.
1978, 42.
136. Hanada, K.; Tamai, M.; Morimoto, S.; Adachi, T.; Ohmura, S.;; Sawada, J. T., I.
Inhibitory Activities of E-64 Derivatives on Papain. Agric. Biol. Chem. 1978, 42,
537-541.
137. Hanada, K.; Tamai, M.; Ohmura, S.; Sawada, J.; Seki, T.; Tanaka, I. . Structure and
Synthesis of E-64, a New Thiol Protease Inhibitor. Agric. Biol. Chem. 1978, 42,
529-536.
138. Bogyo, M.; Verhelst, S.; Bellingard-Dubouchaud, V.; Toba, S.; Greenbaum, D.
Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic
substrate analogs. Chem. Biol. 2000, 7, 27-38.
139. Greenbaum, D.; Medzihradszky, K. F.; Burlingame, A.; Bogyo, M. Epoxide
electrophiles as activity-dependent cysteine protease profiling and discovery tools.
Chem. Biol. 2000, 7, 569-581.
140. Greenbaum, D. C.; Arnold, W. D.; Lu, F.; Hayrapetian, L.; Baruch, A.; Krumrine, J.;
Toba, S.; Chehade, K.; Br闣me, D.; Kuntz, I. D.; Bogyo, M. Small Molecule
Affinity Fingerprinting: a Tool for Enzyme Family Subclassification, Target
Identification, and Inhibitor Design. Chem. Biol. 2002, 9, 1085-1094.
141. Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. Design and Therapeutic
Application of Matrix Metalloproteinase Inhibitors. Chem. Rev. 1999, 99,
2735-2776.
142. Das, M.; Fox, C. F. Chemical Cross-Linking in Biology. Annu. ReV. Biochem. 1979,
8, 165-193.
143. Chan, E. W. C., S.; Panicker, R. C.; Huang, X.; Yao,; Q., S. Developing Photoactive
Affinity Probes for Proteomic Profiling: Hydroxamate-based Probes for
Metalloproteases. J. Am. Chem. Soc. 2004, 126, 14435-14446.
144. Li, Y.-M.; Xu, M.; Lai, M.-T.; Huang, Q.; Castro, J. L.; DiMuzio-Mower, J.;
Harrison, T.; Lellis, C.; Nadin, A.; Neduvelil, J. G.; Register, R. B.; Sardana, M. K.;
Shearman, M. S.; Smith, A. L.; Shi, X.-P.; Yin, K.-C.; Shafer, J. A.; Gardell, S. J.
Photoactivated [gamma]-secretase inhibitors directed to the active site covalently
label presenilin 1. Nature 2000, 405, 689-694.
145. Adam, G. C.; Cravatt, B. F.; Sorensen, E. J. Profiling the specific reactivity of the
proteome with non-directed activity-based probes. Chem. Biol. 2001, 8, 81-95.
146. Adam, G. C.; Sorensen, E. J.; Cravatt, B. F. Proteomic profiling of mechanistically
distinct enzyme classes using a common chemotype. Nat. Biotech. 2002, 20,
805-809.
147. Adam, G. C. B., J.; Kozarich, J. W.; Patricelli, M. P.; Cravatt,; F., B. Mapping
Enzyme Active Sites in Complex Proteomes. J. Am. Chem. Soc. 2004, 126,
1363-1368.
148. Sieber, S. A.; Cravatt, B. F. Analytical platforms for activity-based protein profiling -
exploiting the versatility of chemistry for functional proteomics. Chem. Commun.
2006, 2311-2319.
149. Sieber, S. A. Mondala, T. S.; Head S. R.; Cravatt, B. F. Microarray platform for
profiling enzyme activities in complex proteomes. J. Am. Chem. Soc. 2004, 126,
15640-15641.
150. Berger, A. B.; Vitorino, P. M.; Bogyo, M. Activity-Based Protein Profiling. Am. J.
pharmacogenomics 2004, 4, 371-381.
151. Jessani, N.; Liu, Y.; Humphrey, M.; Cravatt, B. F. Enzyme activity profiles of the
secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 10335-10340.
152. Hirata H.; Takahashi, A., Kobayashi S, et al. Assessment of Caspase Activities in
Intact Apoptotic Thymocytes Using Cell-Permeable Fluorogenic Caspase Substrates.
J. Exp. Med. 2000, 191, 1819-1828.
153. Leung, D.; Hardouin, C.; Boger, D. L.; Cravatt, B. F. Discovering potent and
selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotech. 2003,
21, 687-691.
154. Salisbury, C. M.; Cravatt, B. F. Activity-based probes for proteomic profiling of
histone deacetylase complexes. Proc. Natl. Acad. Sci. U S A. 2007, 104, 1171-1176.
155. Lu, C. P.; Ren, C. T.; Wu, S. H.; Chu, C. Y.; Lo, L. C. Development of an Activity-
Based Probe for Steroid Sulfatases. ChemBioChem 2007, 8, 2187-2190.
156. Li, X.; Cao, J. H.; Li, Y.; Rondard, P.; Zhang, Y.; Yi, P.; Liu, J. F.; Nan, F. J.
Activity-Based Probe for Specific Photoaffinity Labeling γ-Aminobutyric Acid B
(GABAB) Receptors on Living Cells: Design, Synthesis, and Biological Evaluation.
J. Med. Chem 2008, 51, 3057-3060.
157. Greenbaum, D. C.; Baruch, A.; Grainger, M.; Bozdech, Z.; Medzihradszky, K. F.;
Engel, J.; DeRisi, J.; Holder, A. A.; Bogyo, M. A Role for the Protease Falcipain 1 in
Host Cell Invasion by the Human Malaria Parasite. Science 2002, 298, 2002-2006.
158. Barglow, K. T.; Cravatt, B. F. Substrate Mimicry in an Activity-Based Probe That
Targets the Nitrilase Family of Enzymes. Angew. Chem. Int. Ed. 2006, 45, 7408
-7411.
159. Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. Exchange-coupled nanocomposite
magnets by nanoparticle self-assembly. Nature 2002, 420, 395-398.
160. Perez, J. M.; Josephson, L.; O'Loughlin, T.; Hogemann, D.; Weissleder, R. Magnetic
relaxation switches capable of sensing molecular interactions. Nat. Biotech. 2002,
20, 816-820.
161. Lewin, M.; Carlesso, N.; Tung, C.-H.; Tang, X.-W.; Cory, D.; Scadden, D. T.;
Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking
and recovery of progenitor cells. Nat. Biotech. 2000, 18, 410-414.
162. Yuan, F.; Verhelst, S. H. L.; Blum, G.; Coussens, L. M.; Bogyo, M. A Selective
Activity-Based Probe for the Papain Family Cysteine Protease Dipeptidyl Peptidase
I/Cathepsin C. J. Am. Chem. Soc. 2006, 128, 5616-5617.
163. van Swieten, P. F.; Maehr, R.; van den Nieuwendijk, A. M. C. H.; Kessler, B. M.;
Reich, M.; Wong, C.-S.; Kalbacher, H.; Leeuwenburgh, M. A.; Driessen, C.; van der
Marel, G. A.; Ploegh, H. L.; Overkleeft, H. S. Development of an isotope-coded
activity-based probe for the quantitative profiling of cysteine proteases. Bioorg.
Med.Chem. Lett. 2004, 14, 3131-3134.
164. Hang, H. C.; Loureiro, J.; Spooner, E.; van der Velden, A. W. M.; Kim, Y.-M.;
Pollington, A. M.; Maehr, R.; Starnbach, M. N.; Ploegh, H. L. Mechanism-Based
Probe for the Analysis of Cathepsin Cysteine Proteases in Living Cells. ACS Chem.
Biol. 2006, 1, 713-723.
165. Reich, M.; van Swieten, P. F.; Sommandas, V.; Kraus, M.; Fischer, R.; Weber, E.;
Kalbacher, H.; Overkleeft, H. S.; Driessen, C. Endocytosis targets exogenous
material selectively to cathepsin S in live human dendritic cells, while
cell-penetrating peptides mediate nonselective transport to cysteine cathepsins. J.
Leukoc. Biol. 2007, 81, 990-1001.
166. Chen, G. Y. J.; Uttamchandani, M.; Zhu, Q.; Wang, G.; Yao, S. Q. Developing a
Strategy for Activity-Based Detection of Enzymes in a Protein Microarray.
ChemBioChem 2003, 4, 336-339.
167. Maly, D. J.; Huang, L.; Ellman, J. A. Combinatorial Strategies for Targeting Protein
Families: Application to the Proteases. ChemBioChem 2002, 3, 16-37.
168. Wang, G.; Yao, S. Q. Combinatorial Synthesis of a Small-Molecule Library Based
on the Vinyl Sulfone Scaffold. Org. Lett. 2003, 5, 4437-4440.
169. Wang, G.; Mahesh, U.; Chen, G. Y. J.; Yao, S. Q. Solid-Phase Synthesis of Peptide
Vinyl Sulfones as Potential Inhibitors and Activity-Based Probes of Cysteine
Proteases. Org. Lett. 2003, 5, 737-740.
170. Saari, W. S.; Schwering, J. E.; Lyle, P. A.; Smith, S. J.; Engelhardt, E. L.
Cyclization-Activated Prodrugs. Basic Carbamates of 4-Hydroxyanisole. J. Med.
Chem. 1990, 33, 97-101.
171. Shimokawa, K.; Yamada, K.; Ohno, O.; Oba, Y.; Uemura, D. Design, synthesis, and
biological evaluation of biotin-labeled (-)-ternatin, a potent fat-accumulation
inhibitor against 3T3-L1 adipocytes. Bioorg. Med. Chem. Lett. 2009, 19, 92-95.
172. Stefanko, M. J.; Gun'ko, Y. K.; Rai, D. K.; Evans, P. Synthesis of functionalised
polyethylene glycol derivatives of naproxen for biomedical applications.
Tetrahedron 2008, 64, 10132-10139.
173. Reddick, J. J.; Cheng, J.; Roush. W. R. Relative Rates of Michael Reactions of
2‘-(Phenethyl)thiol with Vinyl Sulfones, Vinyl Sulfonate Esters, and Vinyl
Sulfonamides Relevant to Vinyl Sulfonyl Cysteine Protease Inhibitors. Org. Lett.
2003, 5, 1967-1970.