研究生: |
石又尹 |
---|---|
論文名稱: |
以小波轉換演算法建構半導體晶圓缺陷圖樣辨識系統 Wavelet Transform Algorithm Based Wafer Defect Map Pattern Recognition System in Semiconductor Manufacturing |
指導教授: |
陳飛龍
Fei-Long Chen 劉淑範 Shu-Fan Liu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 半導體 、晶圓缺陷 、影像處理 、小波轉換 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於半導體產業的快速發展,對於製程技術的要求越來越高,且良率亦是製造業中重要的獲利指標之一,如何提高製程的良率是一項非常重視的議題。在半導體每道重要製程後所進行之晶圓缺陷圖樣檢測中發現,缺陷圖樣與製程問題間有著密不可分的關係,因此晶圓上的缺陷圖樣資料成為提供工程師改善製程良率問題的重要線索,有鑑於此,本研究提出一能夠有效辨識晶圓缺陷圖樣之架構與方法論,並針對半導體廠所關心之晶圓缺陷圖樣包括曲線型、直線型、戒指型、區域型、放射型、重複型與晶片邊緣型共七種缺陷圖樣進行分析。本研究之分析步驟以半導體廠實際所收集到的缺陷資料轉換成影像方式呈現,並利用影像處理的技術濾除隨機性的缺陷點,接著將留在晶圓上的系統性缺陷進行分群的動作,並擷取分群後每一群缺陷所涵蓋之最小矩形區域,以利後續特徵值的擷取能更準確。接著為本研究分析之核心部份,將所擷取到的缺陷所形成的矩型區域,進行二維的小波轉換,並進一步計算每一頻帶之小波能量特徵值,當作本研究缺陷圖樣之特徵值,將特徵值轉化為特徵向量,並將其投射至特徵空間,利用階層式聚合演算法所形成的七個群聚之距離,並將其分類到距離最近的群聚,以有效辨識出七種缺陷圖樣。本研究之實證結果發現,針對七種缺陷圖樣之辨識正確率達到95%,因此本研究所提出之辨識分析方法具有相當的準確性,同時能夠輔助工程師快速有效率的辨識缺陷圖樣以改善半導體良率問題。
In recent years, the semiconductor industry has been a high-growth business. Yield improvement is more and more important for the process of semiconductor manufacturing since it is an important element to ensure the profitability. Defect spatial pattern impedes yield and it can reveal the root cause of the occurred defects. For this consideration, this research intends to develop a defect spatial pattern methodology for yield enhancement. Defect spatial patterns are classified into seven categories including Curve Type, Line Type, Local Type, Ring Type, Radial Type, Repeat Type and Die Edge Type. To achieve the purpose of recognition, the coordinate data are transformed into image format and image processing techniques are applied to eliminate the random defects. Clustering methods are then applied to locate systematic defects. Minimum rectangle area method is collected cluster defects for further analysis. The feature extraction procedure in this research is adopted by wavelet transform algorithm. By setting feature vectors into feature space and applying hierarchical agglomerative algorithm to clustering, the result is expected to reach the goal of description and classification. The proposed methodology is verified with industrial data from a famous semiconductor company in Taiwan. The average accuracy of recognition is 95%.The experimental results show that this method can successfully recognize the defect spatial patterns and enhance the yield in semiconductor manufacturing.
王怡絜,「交錯圖形偵測應用於半導體缺陷圖樣辨識之研究」,碩士論文,國立清華工業工程與工程管理學系研究所(2006).
高玉惠,「小波轉換應用於影像自動判釋崩塌地分析」,碩士論文,國立成功大學(2004).
連國珍,數位影像處理,儒林圖書公司,2004.
黃志凱,「自動化分類晶圓缺陷圖樣-使用混合圖形特徵辨識」,碩士論文,國立清華工業工程與工程管理學系研究所(2006).
陸陭達,「影像處理技術為基礎之空間性缺陷圖樣辨識演算法」,碩士論文,國立清華工業工程與工程管理學系研究所(2005).
劉巧雯,「利用資料挖礦方法建立半導體晶圓圖之分群分類系統」,碩士論文,國立清華工業工程與工程管理學系研究所(2001).
劉淑範,「以工程資料為基礎之晶圓良率特徵值模式架構與分析」,博士論文,國立清華工業工程與工程管理學系研究所(2004).
謝祥文,「區域分割為基礎之晶圓缺陷圖樣辨識演算法」,博士論文,國立清華工業工程與工程管理學系研究所(2004).
Aleksander, I., Morton, H., “An Introduction to Neural Computing” Chapman and hall, (1990).
Ankerst, M., Breuning, M., Kriegel, H. P. and Sander, J., “OPTICS: Ordering points to identity the clustering structure,” Proceedings of the 1999 ACM SIGMOD international conference on Management of data, 28(2), pp.49-60, (1999).
Breaux, L., Singh, B., “Automatic Defect Classification System For Patterned Semiconductor Wafers” IEEE International Symposium on Semiocnductor Manufacturing, pp68-73, (1995).
Chen, F. L., Liu, S. F., “A Neural-Network Approach To Recognize Defect
Spatial Pattern In Semiconductor Fabrication” IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL.13, NO.3, pp.366-373, (2000)
Ester, M., Kriegel, H. P., Sander, J. and Xu, X., “A density-based algorithm for discovering clusters in large spatial databases,” Conf. Knowledge Discovery and Data Mining, pp.226-331,(1996).
Friedman, D. J., Hansen, M. H., Nair, V. N., and James, D. A., “Model-free estimation of defect clustering in integrated circuit fabrication” IEEE Transactions on Semiconductor Manufacturing, pp.344-359, (1997).
Gonzalez, R. C., Woods, R. E., Rafael C. G., and Richard, E.W., “Digital image processing,” Prentice Hall, (2002).
Guha, Sudipto, Rastogi, Rajeev, and Shim, Kyuseok, “CURE: An Efficient Clustering Algorithm for Large Databases,” ACM-SIGMOD International Conference on Management of Data, 73-84(1998).
Huanh, C. J. , Wu,C. F. and Wang, C. C., ”Image processing techniques for wafer defect cluster identification” , IEEEE Design & Test of Computers, (2002).
Jain, A. K., Trier, I. D., Taxt, T., “FEATURE EXTRACTION METHODS FOR CHARACTER RECOGNITION-A SURVEY” Elsevier Science Ltd, pp641-642,(1996).
Kaempf, U., “The Binomial Test:A Simple Tool To Identify Process Problems,” IEEE Transactions on Semiconductor Manufacturing, pp.160-165, (1995)
Mirza, A. I. , Donoghue, G., O’ ,Drake, A. W.,”Spatial Yield Modeling for Semiconductor Wafers” , IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp.276-281, (1995).
Misiti, M., Misiti, Y., Oppenheim, G., Poggi. J. M., “MATLAB Wavelets toolbox” User's Guide, Versionl, Maths Works Inc.,(1996).
Mohan, C. K., Mehrotra, K., Ranke, S., ” Elements of Artificial Neural Networks” (1997).
Nemoto, K., Ono, M., Ariga, M., ”An Effective Method for Yield Enhancement using Zonal Defect Recognition” IEEE Semiconductor Manufacturing Conference Proceedings, pp.E25-E28, (1997).
Petersen, M. E., Ridder, D., Handels, H., “Image processing with neural networks—a review” Copyright Elsevier Science, Vol. 35, No. 10, pp. 2279-2301, (2002).
Su, C. T., Yang, T., Ke, C.M., “A Neural-Network Approach for Semiconductor Wafer Post-Sawing Inspection” IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 15 NO. 2, pp260-266, (2002).
Wan,g Wei, Yang, Jiong, and Muntz, Richard, “STING: A Statistical Information Grid Approach to Spatial Data Mining,” International conference on very large data base, pp.186-195,(1997).
Wong, A. Y., “A Statistical Parametric and Probe Yield Analysis Methodology” Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Symtems, pp.131-139, (1996).
Yorgos A. Karayiannis, Radovan Stojanovic Pariaiotis Mitropoulos, Christos Koulamas, Thanos Stouraitis, Stavros Koubias, George Papadopoulos, “Defect Detection and Classification on Web Textile Fabric using Multiresolution Decomposition and Neural Networks,” IEEE , pp. 765-768, (1999).
Zhang, T., Ramakrishnan, R. and Livny, M., “Birch: An efficient data clustering method for very large database,” Processing of the ACM SIGMOD international conference on Management of data,25(2),pp.103-114,(1996).