研究生: |
傅世宇 Fu, Shih-Yu |
---|---|
論文名稱: |
追尋於米氏散射產生的全介電質奈米雷射 In pursuit of dielectric nanolaser induced by Mie Resonance |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
呂宥蓉
Lu, Yu-Rung 張文豪 Chang, Wen-Hao 黃宗鈺 Huang, Tsung-Yu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 米式散射 、介電質 、奈米雷射 |
外文關鍵詞: | Mie_scattering, dielectric, nanolaser |
相關次數: | 點閱:51 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射,因為其窄頻寬、高功率密度與同調輸出的特性,而成為現今研究領域最被廣泛使用的人造光源。自紅寶石雷射以來,人們對於機構設計的進步與更多樣材料的選擇,使得形態與功能各異的雷射裝置得以實現。有賴於半導體優良的光電特性與半導體製程上的進步,使得人們能夠將增益介質與共振腔以各異的材料及厚度來實現,藉由整合增益介質與共振腔這兩種原本分離的結構進而達到微縮尺寸的目的,並大量且成功地應用在消費性電子產品,如早期光碟機的讀取頭與現今臉部辨識所使用的面射型紅外光雷射。
在本論文中,我們希望循著上述邏輯,藉由整合共振機構與增益介質的方式並搭配製程上的巧思來達到更進一步的尺寸微縮。從材料的選擇開始,我們採用比一般塊材具有更大增益特性的量子磊晶層搭配三五族半導體作為增益介質。在共振腔的設計上,我們捨棄了僅控制單維厚度,如布拉格反射式共振腔的方式,進而使用包含三個維度控制的米式散射共振腔,以達到在三個維度上同時縮小體積的目的。最後,將尺寸定義完成的共振腔與增益介質複合結構取下並轉移至較低折射率的材料中,以減低對場分布的影響。
最後,我們並沒有以此方式成功製作出雷射光源。即使沒有明確跡象表示雷射的可行性,但在更加精細的條件控制後,還是具有潛在實現的可能。
LASER, the most widely used artificial light source which provide narrow bandwidth and high output power density. Since the Ruby laser, we already have a lot of different kinds of laser device with unique application by the improvement of structure design and the material engineering. In the field of semiconductor laser, we can combine the feedback resonator and gain medium within a piece rather than several separated components in original laser device which being able to miniaturize the size of it. Such idea became a big success in the commercial product, for example, optical reader of a Blu-ray disk and facial recognition by vertical cavity surface emitting laser (VCSEL). In this research, we would like to further improve this idea, combine resonator and gain medium in same piece to achieve a laser in the size of nanometers. By the calculation of Mie scattering, we can shrink the resonator size in three-dimension rather than one-dimension in normal semiconductor laser. Also we introduce quantum material to provide more efficient gain. Finally, transfer the whole device to a low refractive index material to prevent the competition of electric field of substrate. Even though we never achieve it. But there are still possibilities after more precise control of all parameters.
[1] Scott T. Parker, “Dispersion relationship,” Dispersion curve for surface plasmons, 04-Dec-2007. [Online]. Available: en.wikipedia.org/wiki/Surface_plasmon#/media/File:Dispersion_Relationship.png.
[2] D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett., vol. 90, no. 2, Jan. 2003.
[3] M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt., vol. 12, no. 2, p. 024004, Feb. 2010.
[4] P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics, vol. 6, no. 1, pp. 16–24, Dec. 2011.
[5] M. T. Hill et al., “Lasing in metallic-coated nanocavities,” Nat. Photonics, vol. 1, no. 10, pp. 589–594, Oct. 2007.
[6] Y.-H. Chou et al., “High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum,” Nano Lett., vol. 16, no. 5, pp. 3179–3186, May 2016.
[7] R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light,” Mater. Today, vol. 15, no. 1, pp. 26–34, 2012.
[8] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics, vol. 2, no. 8, pp. 496–500, Aug. 2008.
[9] M. A. Noginov et al., “Demonstration of a spaser-based nanolaser,” Nature, vol. 460, no. 7259, pp. 1110–1112, Aug. 2009.
[10] N. Arnold, B. Ding, C. Hrelescu, and T. A. Klar, “Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels,” Beilstein J. Nanotechnol., vol. 4, pp. 974–987, Dec. 2013.
[11] P. Gu, D. J. S. Birch, and Y. Chen, “Dye-doped polystyrene-coated gold nanorods: towards wavelength tuneable SPASER,” Methods Appl. Fluoresc., vol. 2, no. 2, p. 024004, Apr. 2014.
[12] J. A. Stratton, Electromagnetic theory. John Wiley & Sons, 2007.
[13] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., vol. 40, no. 11, pp. 939–941, Jun. 1982.
[14] K. Hess, B. A. Vojak, N. Holonyak, J. R. Chin, R. Chin, and P. D. Dapkus, “Temperature dependence of threshold current for a quantum-well heterostructure laser,” Soli-State Electron., vol. Vol.23, no. No.6, pp. 585–589, Dec. 1979.
[15] Y. Arakawa and A. Yariv, “Quantum Well Lasers-Gain, Spectra, Dynamics,” IEEE J. Quantum Electron., vol. Vol.22, no. No.9, pp. 1887–1899, Sep. 1986.
[16] J. H. Seinfield and S. N. Pandis, Atmospheric Chemistry and Physics, 2nd ed. John Wiley & Sons, 2006.
[17] A. Alu and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express, vol. 17, no. 7, pp. 5723–5730, 2009.
[18] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal: Modeling The Flow of Light, Second edition. Princeton University Press, 2008.
[19] S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics, vol. 2, no. 7, pp. 429–432, Jul. 2008.
[20] N. Tansu, Jeng-Ya Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum-well lasers by metalorganic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 5, pp. 1220–1227, Sep. 2003.
[21] V. A. Kheraj, C. J. Panchal, P. K. Patel, B. M. Arora, and T. K. Sharma, “Optimization of facet coating for highly strained InGaAs quantum well lasers operating at 1200nm,” Opt. Laser Technol., vol. 39, no. 7, pp. 1395–1399, Oct. 2007.
[22] H.-P. D. Yang, C.-T. Shih, S.-M. Yang, and T.-D. Lee, “Broad-area InGaNAs/GaAs quantum-well lasers in the 1200 nm range,” 2009, pp. 820–826.
[23] T. Kondo et al., “Lasing characteristics of 1.2 μm highly strained GaInAs/GaAs quantum well lasers,” Jpn. J. Appl. Phys., vol. 40, no. 2R, p. 467, 2001.
[24] C. A. Broderick, S. Bogusevschi, and E. P. O’Reilly, “Theory and optimisation of 1.3 and 1.55 μm (Al) InGaAs metamorphic,” presented at the NUSOD, 2016.
[25] Y. P. Varshini, “Temperature Dependence of The Energy Gap in Semiconductors,” Physica, vol. 34, pp. 149–154, 1967.
[26] M. A. Mohsin and J. M. Cowie, “Enhanced sensitivity in the electron beam resist poly (methyl methacrylate) using improved solvent developer,” Polymer, vol. 29, no. 12, pp. 2130–2135, 1988.
[27] M. J. Rooks, E. Kratschmer, R. Viswanathan, J. Katine, R. E. Fontana, and S. A. MacDonald, “Low stress development of poly(methylmethacrylate) for high aspect ratio structures,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct., vol. 20, no. 6, p. 2937, 2002.
[28] S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology, vol. 21, no. 29, p. 295303, Jul. 2010.
[29] A. G. Baca and C. I. H. Ashby, Fabrication of GaAs Devices. London, United Kingdom: The Institution of Electrical Engineers, 2005.
[30] H. Taguchi, “Epitaxial lift-off process for GaAs solar cell on Si substrate,” Sol. Energy Mater. Sol. Cells, Jun. 2004.
[31] M. Konagai, M. Sugimoto, and K. Takahashi, “High efficiency GaAs thin film solar cells by peeled film technology,” J. Cryst. Growth, vol. 45, pp. 277–280, 1978.
[32] M. M. A. J. Voncken et al., “Etching AlAs with HF for Epitaxial Lift-Off Applications,” J. Electrochem. Soc., vol. 151, no. 5, p. G347, 2004.
[33] F.-L. Wu, S.-L. Ou, R.-H. Horng, and Y.-C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells, vol. 122, pp. 233–240, Mar. 2014.
[34] J. Maeda et al., “High Rate GaAs Epitaxial Lift Off Technique for Optoelectronic Integrated Circuits,” Jpn. J. Appl. Phys., vol. 36, no. 3, pp. 1554–1557, Mar. 1997.
[35] A. Van Geelen, P. R. Hageman, G. J. Bauhuis, P. C. Van Rijsingen, P. Schmidt, and L. J. Giling, “Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate,” Mater. Sci. Eng. B, vol. 45, no. 1–3, pp. 162–171, 1997.
[36] M. Voncken, J. J. Schermer, G. Maduro, G. J. Bauhuis, P. Mulder, and P. K. Larsen, “Influence of radius of curvature on the lateral etch rate of the weight induced epitaxial lift-off process,” Mater. Sci. Eng. B, vol. 95, no. 3, pp. 242–248, 2002.
[37] J. J. Schermer et al., “High rate epitaxial lift-off of InGaP films from GaAs substrates,” Appl. Phys. Lett., vol. 76, no. 15, pp. 2131–2133, Apr. 2000.
[38] J. J. Schermer et al., “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films, vol. 511–512, pp. 645–653, Jul. 2006.
[39] C.-I. Liao, M.-P. Houng, and Y.-H. Wang, “Highly Selective Etching of GaAs on Al[sub 0.2]Ga[sub 0.8]As Using Citric Acid/H[sub 2]O[sub 2]/H[sub 2]O Etching System,” Electrochem. Solid-State Lett., vol. 7, no. 11, p. C129, 2004.
[40] J.-H. Kim, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H[sub 2]O[sub 2] and de-ionized H[sub 2]O/buffered oxide etch,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct., vol. 16, no. 2, p. 558, Mar. 1998.
[41] E. Y. Chang, Y.-L. Lai, Y. S. Lee, and S. H. Chen, “A GaAs/AlAs wet selective etch process for the gate recess of GaAs power metal-semiconductor field-effect transistors,” J. Electrochem. Soc., vol. 148, no. 1, pp. G4–G9, 2001.
[42] W. Choi et al., “A Repeatable Epitaxial Lift-Off Process from a Single GaAs Substrate for Low-Cost and High-Efficiency III-V Solar Cells,” Adv. Energy Mater., vol. 4, no. 16, p. 1400589, Nov. 2014.
[43] J. Yoon et al., “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature, vol. 465, no. 7296, pp. 329–333, May 2010.
[44] R. Camacho-Morales et al., “Nonlinear Generation of Vector Beams From AlGaAs Nanoantennas,” Nano Lett., vol. 16, no. 11, pp. 7191–7197, Nov. 2016.
[45] S. S. Kruk et al., “Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas,” Nano Lett., vol. 17, no. 6, pp. 3914–3918, Jun. 2017.
[46] E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Proc. Am. Phys. Soc., vol. 69, no. 11, p. 681, 1946.
[47] P. Klenovský, P. Steindl, and D. Geffroy, “Excitonic structure and pumping power dependent emission blue-shift of type-II quantum dots,” Sci. Rep., vol. 7, no. 1, Dec. 2017.
[48] S. T. Jagsch et al., “A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities,” Nat. Commun., vol. 9, no. 1, Dec. 2018.
[49] M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys., vol. 6, no. 4, pp. 279–283, Apr. 2010.