簡易檢索 / 詳目顯示

研究生: 洪維成
Wei-cheng Hung
論文名稱: H.264視訊解碼耗能分析與降低
Power Analysis and Reduction of an H.264/AVC Video Decoder System
指導教授: 林永隆
Youn-long Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 32
中文關鍵詞: H.264影像壓縮功耗
外文關鍵詞: H.264/AVC, power consumption, video compression
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體製程的進步,耗能問題不只是像過去被輕忽,被遺忘的問題。如何降低耗能將益趨重要,尤其是如視訊解碼之類的資料密集相關應用。由國際組織ITU-T 及ISO共同提出的H.264/AVC,正是目前最先進的視訊解碼器,在低資料傳輸率下可提供比先前標準更高畫質的影像。我們實驗室已經開發出一個全硬體化支援H.264/AVC 主要檔次的視訊解碼器。在此論文中,先分析整體總耗能,評估出耗費大量功耗原因後,對症下藥,提出一些節省耗能的新方法如H.264特有的略過模式,以及針對時序耗能、靜態隨機處理記憶體耗能,採用現有的方法來大量降低此系統的耗能,並且更進一步評估每種方法的有效程度。除了總耗能外,我們亦針對尖峰功率,重新安排每個解碼工具執行時間,儘可能地錯開關鍵性的解碼工具執行時段來大幅降低尖峰功率,使此解碼系統更穩定且更可靠。在不影響解碼器執行效能下,將上述提出來的方法應用到此系統之後,可以跑在三十百萬赫茲(30 MHz),達到即時解碼(每秒至少三十張畫面)標準畫質(720x480)大小的影像,而消耗總耗能達21.2mW,耗費尖峰功率達330mW。結果和原本作品相較之下,分別可以省下大約百分之五十三的總耗能和百分之四十五的尖峰功率。當畫面延伸至高畫質(HDTV)解析度時,和其他先前作品比較之下,我們仍然可以節省約百分之三到百分之四十六的耗能。


    As semiconductor technology advances, energy efficiency becomes important, especially for data-intensive applications like video codec. We have designed a hardwired H.264/AVC main profile decoder system. We propose several techniques together with some well-know power-saving methods to reduce the total energy and peak power. After appling these techniques, our decoder can real-time decode D2 (720x480) video sequences consuming 21.2 mW of average power and 330 mW of peak power.

    Contents ABSTRACT 1 CONTENTS 2 LIST OF FIGURES 3 LIST OF TABLES 4 CHAPTER 1 5 INTRODUCTION 5 1.1 THE OVERVIEW OF H.264/AVC 5 1.2 NTHU H.264/AVC DECODER SYSTEM 6 1.3 LOW POWER TECHNOLOGY 7 CHAPTER 2 9 PREVIOUS WORK 9 2.1 RELATED WORK 9 2.2 EXISTING POWER-SAVING TECHNIQUES 12 CHAPTER 3 14 POWER ANALYSIS OF AN H.264/AVC DECODER SYSTEM 14 3.1 POWER DISTRIBUTION 14 3.2 TOTAL ENERGY FOR DECODING AN MB 16 3.3 PEAK POWER OF EACH MB 17 CHAPTER 4 18 POWER REDUCTION TECHNIQUES FOR THE DECODER SYSTEM 18 4.1 TOTAL ENERGY REDUCTION 18 4.1.1 Clock Power Reduction 18 4.1.2 Memory Power Reduction 20 4.1.3 Skip Mode for Power Reduction 22 CHAPTER 5 27 EXPERIMENTAL RESULTS 27 CHAPTER 6 30 CONCLUSION 30 BIBLIOGRAPHY 31 List of Figures Figure 1. The NTHU H.264/AVC Decoder Block Diagram 6 Figure 2. Types of Clock Gating 13 Figure 3. Decoder Power Distribution 14 Figure 4. The Power Consumption of Each Functional Block 15 Figure 5. Max, Average, and Min Number of Cycles to Decode a MB 16 Figure 6. Peak Power of Decoding an MB 17 Figure 7. The Module-based Clock Gating for Our Decoder 19 Figure 8. Three-layer Memory Hierarchy 21 Figure 9. Memory Partition and Selector 22 Figure 10. Active Period Cycles Prediction for Each MB 24 Figure 11. The Flow Chart of Active Period Rescheduling 25 Figure 12. A Example of Active Period Rescheduling 26 Figure 13. Power Reduction due to Clock Gating in Intra-frame 27 List of Tables Table 1. The Comparison of Previous Work 11 Table 2. ENABLE Signals 19 Table 3. Memory Characteristics 20 Table 4. The Memory Power Reduction in Our Decoder 28 Table 5. The Results of PAPC and Peak Power 29

    [1]. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264|ISO/IEC 14496-10 AVC)
    [2]. Quick Time, Apple Inc., Available at http://www.apple.com/quicktime/guide
    [3]. TMS320DM642, Texas Instruments Inc., Available at http://focus.ti.com/lit/ds/symlink/tms320dm642.pdf
    [4]. S. H. Wang, W. H. Peng, Y. W. He, G. Y. Lin, C. Y. Lin, S. C. Chang, C. N. Wang, and T. H. Chiang, “A Platform-Based MPEG-4 Advanced Video Coding (AVC) Decoder with Block Level Pipelining”, International Conference on Information, Communications and Signal Processing Pacific-Rim Conference On Multimedia, pp. 51-55, Singapore, December, 2003
    [5]. Y. H. Yang, W. J. Zhang, L. X. Xiong, and Z. N. Rao, “Hardware-Software Co-implementation of H.264 Decoder in SoC”, Journal of Shanghai Jiaotong University (Science), 11:335-339, September, 2006
    [6]. T. W. Chen, Y. W. Huang, T. C. Chen, Y. H. Chen, C. Y. Tsai, and L. G. Chen, “Architecture Design of H.264/AVC Decoder with Hybrid Task Pipelining for High Definition Videos”, International Symposium on Circuits and System, pp. 2931-2934, Kobe, Japan, May, 2005
    [7]. Y. Hu, A. Simposon, K. McAdoo, and J. Cush, “A High Definition H.264/AVC Hardware Video Decoder Core for Multimedia SoC’s”, International Symposium on Consumer Electronics, pp. 385-389, Reading, United Kingdom, September, 2004
    [8]. C. C. Lin, J. I. Guo, H. C. Chang, Y. C. Yang, J. W. Chen, M. C. Tsai, and J. S. Wang, “A 160kGate 4.5kB SRAM H.264 Video Decoder for HDTV Applications”, Journal of Solid-State Circuits, 42(1):170-182, January, 2007
    [9]. T. A. Lin, T. M. Liu, and C. Y. Lee, “A Low-power H.264/AVC Decoder”, International Symposium on VLSI Design, Automation, and Test, pp. 283-286, Hsinchu, Taiwan, April, 2005
    [10]. H. Masaru, A. Kazushi, N. Masaki, and M. Keisuke, “Development of Low-power and Real-time VC-1/H.264/MPEG-4 Video Processing Hardware”, Asia and South Pacific Design Automation Conference, pp. 637-643, Yokohama, Japan, January ,2007
    [11]. T. M. Liu, C. C. Chung, C. Y. Lee, T. A. Lin, and S. Z. Wang, “Design of a 125μW, Fully-scalable MPEG-2 and H.264/AVC Video Decoder for Mobile Applications”, In Proceedings of 43rd annual conference on Design Automation, pp. 288-289, San Francisco, USA, July, 2006
    [12]. Design Compiler, Synopsys Corporation http://www.synopsys.com/products/logic/design_compiler.html
    [13]. PrimePower, Synopsys Corporation http://www.synopsys.com/products/power/primepower_ds.pdf

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE