研究生: |
楊廣浩 Yang, Kuang-Hao |
---|---|
論文名稱: |
一價釕金屬錯合物的合成與反應性的研究 synthesis of univalent ruthenium complexes and reactivity study |
指導教授: | 蔡易州 |
口試委員: |
洪嘉呈
尤禎祥 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 一價釕金屬 、一氧化氮 、一氧化碳 |
外文關鍵詞: | Ruthenium Complexes, hydroxyl-bridged |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以低價數以及低配位數的釕金屬錯合物與小分子的活化反應為主要重心。其中,以不同的配基所形成的釕金屬錯合物可以分為兩個部分;第一部分為低價數以及低配位數的釕之雙氮基脒錯合物(Ru[-2-HC(N-2,6-iPr2C6H3)2](6-Ar) (Ar = p-cymene, 4; benzene, 6)與小分子的反應;首先,利用雙氮基脒配基與釕金屬反應可以合成出釕二價的錯合物(Ru[-2-HC(N-2,6-iPr2C6H3)2](6-Ar)Cl (Ar = p-cymene, 3; benzene, 4))。將二價的釕金屬錯合物(3,4)加入鉀石墨(KC8)進行還原反應可以合成出低價數以及低配位數的釕金屬錯合物(4,6)。此外,使用AgOTf (OTf = O3SCF3)與錯合物3反應,可以得到錯合物[Ru[-2-HC(N-2,6-iPr2C6H3)2](6-p-cymene)](OTf) (7)。錯合物4與三甲基矽疊氮化合物反應可以得到錯合物Ru[-2-HC(N-2,6-iPr2C6H3)2](6-p-cymene)(N3) (9)。利用錯合物4與兩當量的一氧化氮反應可以得到錯合物{(-NO)Ru(NO)[-2-HC(N-2,6-iPr2C6H3)2]}2 (10)以及活化碳-氫鍵的錯合物Ru2(-OH)[-2-HC(N-2,6-iPr2C6H3)][-2-HC(N-2,6-iPr2C6H3) (N-2-(1-CH2)CH3CH-6-iPrC6H3)] (11);而錯合物4通入過量的一氧化氮反應可以得到有機化合物HC(N-2,6-iPr2C6H3)[(NO)N-2,6-iPr2C6H3] (12)。錯合物4與過量的一氧化碳反應可以得到兩個產物,錯合物
{Ru[-2-HC(N-2,6-iPr2C6H3)2C(O)](CO)2}2 (13)以及錯合物{Ru[-2-HC(N-2,6-iPr2C6H3)2C(O)](CO)3}2 (14)。
本論文第二部分研究雙和的釕金屬錯合物[(-NO)Ru(Nacnac)]2 (15)與氰化物的反應性。錯合物15與苯氰反應可以生成錯合物Ru(Nacnac)Dipp(NO)(NCPh) (16)。而錯合物15與三甲基矽氰反應可以得到錯合物Ru(Nacnac)Dipp(NO)(NCTMS) (17)。
A series of Ru(II) complexes supported by amidinate ligand with general formula of Ru[-2-HC(N-2,6-iPr2C6H3)2](6-arene)(X) (X = Cl, arene = p-cymene, 3; benzene, 5; X = OTf, arene = p-cymene, 7) were successfully synthesized. Reduction of Ru[-2-HC(N-2,6-iPr2C6H3)2] (6-arene)(Cl) (3, 5) with KC8 furnished a novel, low coordinate, half sandwich and univalent ruthenium complexes, Ru[-2-HC(N-2,6 -iPr2C6H3)2](6-arene) (arene = p-cymene, 4; benzene, 6). The reaction of Ru[-2-HC(N-2,6-iPr2C6H3)2](6-p-cymene) (4) with organic azides (TMSN3, TMS = trimethylsilane) resulted in the formation of an azido bound complex Ru[-2-HC(N-2,6-iPr2C6H3)2](6-p-cymene) (N3) (9).
After exposure of a solution of Ru[-2-HC(N-2,6-iPr2C6H3)2] (6-p-cymene) (4) to two equivalents of nitric oxide, two products can be isolated: an NO-bridge and NO-binded dinuclear ruthenium complex {(-NO)Ru(NO)[-2-HC(N-2,6-iPr2C6H3)2]}2 (10) with both ruthenium atoms in 18-electron configuration, as well as a hydroxyl-bridged C-H activation complex Ru2(-OH)[-2-HC(N-2,6-iPr2C6H3)][-2-HC (N-2,6-iPr2C6H3)(N-2-(1-CH2)CH3CH-6-iPrC6H3)] (11). Reaction of 4 with excess nitric oxide afforded an organic product HC(N-2,6-iPr2C6H3)[(NO)N-2,6-iPr2C6H3] (12). Moreover, exposure of a solution of 4 to excess carbon monoxide led to the formation of dinuclear complexes {Ru[-2-HC(N-2,6-iPr2C6H3)2C(O)](CO)2}2 (13) and {Ru[-2-HC(N-2,6-iPr2C6H3)2C(O)](CO)3}2 (14).
Furthermore, reaction of [(-NO)Ru(Nacnac)]2 (15) with benzonitrile gave four coordinate and uninucleated complex Ru(Nacnac)Dipp(NO)(NCPh) (16). Upon treatment of 15 with trimethylsilanecarbonitrile (TMSCN), the product Ru(Nacnac)Dipp(NO)(NCTMS) (17) can be obtained.
(1) Reithofer, M. R.; Müller, P.; Schrock, R. R. J. Am. Chem. Soc. 2010, 132, 8349–
8358.
(2) Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.;
Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. J. Am. Chem. Soc.
2006, 128, 756-769.
(3) Smaglik, P. Nature 2000, 406, 807-808.
(4) Jackson, W. G.; McKeon, J. A.; Cortez, S. Inorg. Chem. 2004, 43, 6249-6254.
(5) Kristin, B.-J. Acc. Chem. Res. 2005, 38, 671-678.
(6) Cummins, C. C. Prog. Inorg. Chem. 1998, 47, 685-836.
(7) Alvarez, S. Coord. Chem. Rev. 1999, 193-195, 13-41.
(8) MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385-401.
(9) (a) Laplaza, C. E.; Cummins, C. C. Science, 1995, 268, 861-863. (b) Laplaza, C.
E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.;
George, G. N.; Pickering, I. J. J. Am. Chem. Soc. 1996, 118, 8623-8638.
(10) Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020-4021.
(11) Frey, A. S. P.; Cloke, F. G. N.; Coles, M. P.; Maron, L.; Davin, T. Angew. Chem.
Int. Ed. 2011, 50, 6881-6883.
(12) Alyea, E. C.; Basi, J. S.; Bradley, D. C.;Chisholm, M. H. Chem. Commun. 1968,
495.
(13) Bradley, D. C.; Hursthouse, M. B.; Newing, C.W. Chem. Commun. 1971,
411-412.
(14) Chai, J.; Zhu, H.; Stückl, A. C.; Roesky, H. W.; Magull, J.; Bencini, A.; Caneschi,
A.; Gatteschi, D. J. Am. Chem. Soc. 2005, 127, 9201-9206.
(15) Tsai, Y.-C.; Wang, P.-Y.; Chen, S.-A.; Chen, J.-M. J. Am. Chem. Soc. 2007, 129,
8066-8067.
(16) Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M. Chem. Commun.
2008, 205-207.
(17) Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C.
Coord. Chem. Rev. 2006, 250, 1234-1253.
(18) Ciszewski, J. T.; Harrison, J. F.; Odom, A. L. Inorg. Chem. 2004, 43, 3605-3617.
(19) Lin, Z.; Hall, M. B. Coord. Chem. Rev. 1993, 123, 149-167.
(20) Buchmeiser, M.R. Chem. Rev. 2000, 100, 1565-1604.
(21) Schrock R. R. Tetrahedron 1999, 55, 8141-8153.
(22) Jamieson, J. Y.; Schrock, R. R.,; Davis, W. M., Bonitatebus, P. J.; Zhu S. S.;
Hoveyda, A. H. Organometallics 2000, 19, 925-930.
(23) Adams, J. A.; Ford, J. G.; Stamatos, P. J.; Hoveyda, A. H. J. Org. Chem. 1999,
64, 9690-9696.
(24) Nugent, W. A.; Feldman, J.; Calabrese J. C. J. Am. Chem. Soc. 1995, 117, 8992-
8998.
(25) La, D. S.; Alexander, J. B.; Cefalo, D. R.; Graf, D. D.; Hoveyda, A. H.; Schrock R. R. J. Am. Chem. Soc. 1998, 120, 9720-9721.
(26) Fujimura, O.; Grubbs, R. H. J. Org. Chem. 1998, 63, 824-832.
(27) Schrock R. R. J. Org. Chem. 1990, 23, 158-165.
(28) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696-10719.
(29) Ackermann, L.; Bergman, R. G. Org. Lett. 2002, 4, 1475-1478.
(30) Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125,
8100-8101.
(31) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956-
11963.
(32) Cao, C.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2003, 125, 2880-2881.
(33) Zuckerman, R. L.; Krska, S. W.; Bergman, R. G. . J. Am. Chem. Soc. 2000, 122,
751-761.
(34) Bruno, J. W.; Li, X. J. Organometallics 2000, 19, 4672-4674.
(35) Burland, M. C.; Meyer, T. Y. Inorg. Chem. 2003, 42, 3438-3444.
(36) Wigley, D. E. Organoimido Complexed of the Transition Metals. In Progress in
Inorganic Chemistry Karlin, K. D., Ed., John Wiley & Sons: New York, 1994;
Vol. 42, p239.
(37) Barrie, P.; Coffey, T. A.; Forster, G. D.; Hogarth, G. J. Chem. Soc., Dalton Trans.
1999, 4519-4528.
(38) Bradley, D. C.; Hodge, S. R.; Runnacles, J. D.; Hughes, M.; Mason, J.; Richards,
R. L. J. Chem. Soc., Dalton Trans.1992, 1663-1668.
(39) Strong, J. B.; Yap, G. P. A.; Ostrander, R.; Liable-Sands, L. M.; Rheingold, A. L.;
Thouvenot, R.; Gouzerh, P.; Maatta, E. A. J. Am. Chem. Soc. 2000, 122,
639-649.
(40) Cundari, T. R. Chem. Rev. 2000, 100, 807-818.
(41) Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nature 1987, 327, 524-526.
(42) Culotta, E.; Koshland Jr, D. E. Science 1992, 258, 1862-1865.
(43) McCleverty, J. A. Chem. Rev. 2004, 104, 403-418.
(44) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935-991.
(45) (a) Crease, A. E.; Legzdins, P. J. Chem. Soc, Dalton Trans. 1973, 1501-1507.
(b) Crease, A. E.; Legzdins, P. J.Chem.Soc.,Chem.Commun. 1972, 268-269.
(46) (a) Gibson, C. P.; Bem, D. S.; Falloon, S. B.; Hitchens, T. K.; Cortopassi, J. E.
Organometallics 1992, 11, 1742-1749. (b) Odom, A. L.; Cummins, C. C.;
Protasiewicz, J. D. J. Am. Chem. Soc. 1995, 117, 6613-6614. (c) Legzdins, P.;
Rettig, S. J.; Sayers, S. F. J. Am. Chem. Soc. 1994, 116, 12105-12106.
(47) (a) Weiner, W. P.; White, M. A.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103,
3612-3614. (b) Weiner, W. P.; Bergman, R. G. J. Am. Chem. Soc. 1983, 105,
3922-3929. (c) Lin, S.-H.; Peng, S.-M.; Liu, R.-S. J.Chem.Soc.,Chem.Commun.
1992, 615-617. (d) Lin, S. H.; Lee, G. H.; Peng, S. M.; Liu, R. S.
Organometallics 1993, 12, 2591-2599.
(48) (a) Littlejohn, D.; Chang, S. G. Ind. Eng. Chem. Res. 1990, 29, 10-14. (b) Sun, K.
S.; Kong, K. C.; Cheng, C. H. Inorg. Chem. 1991, 30, 1998-2004.
(49) Field, C. N.; Green, J. C.; Mayer, M.; Nasluzov, V. A.; Rösch, N.; Siggel, M. R.
F. Inorg. Chem. 1996, 35, 2504-2514.
(50) Rahman, A. F. M. M.; Salem, G.; Stephens, F. S.; Wild, S. B. Inorg. Chem. 1990,
29, 5225-5230.
(51) Del Zotto, A.; Mezzetti, A.; Novelli, V.; Rigo, P.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. 1990, 1035-1042.
(52) Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1998, 120, 9034-9040.
(53) Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504-10512.
(54) Schneider, J. L.; Carrier, S. M.; Ruggiero, C. E.; Young, V. G.; Tolman, W. B.
J. Am. Chem. Soc. 1998, 120, 11408-11418.
(55) Ruggiero, C. E.; Carrier, S. M.; Antholine, W. E.; Whittaker, J. W.; Cramer, C. J.;
Tolman, W. B. J. Am. Chem. Soc. 1993, 115, 11285-11298.
(56) Li L.; Hsu A.; Moore, P. K. Pharmacology & Therapeutics 2009, 123, 386–400.
(57) Gilliam, O. R.; Johnson, C. M.; Gordy, W. Physical Review 1950, 78, 140-144.
(58) Stefan, T.; Janoschek, R. J. Mol. Model. 2000, 6, 282 – 288.
(59) Blanco, F.; Alkorta, I.; Solimannejad, M.; Elguero, J. J. Phys. Chem. A 2009, 113,
3237–3244.
(60) 林冠銘, 國立清華大學化學研究所碩士論文, 2008.
(61) 林怡慶, 國立清華大學化學研究所碩士論文, 2011.
(62) Andrew D. P., Gabor L., Rosario S., Paul J. D. Organometallics 2007, 26,
1120−1122.
(63) Taruna S., Ram K., Munirathinam N., Natesan T. Inorg. Chem. 2012, 51,
157−169.
(64) Bruce A. A., Chem. Rev. 1996, 96, 2951–2964.
(65) Eftychia P., Stavros S., Andrea U., Constantinos V. J. Am. Chem. Soc. 2002, 124,
9378−9379.
(66) Robert P., Tooze W., Geoffrey W., Majid M., Michael B. H. J. Chem. Soc.,
Dalton Trans. 1986, 2711-2720.
(67) Yasuhiro A., Naoki M., Taiki A., Keisuke U., Masayoshi O. Dalton Trans.
2011, 40, 2148–2150.
(68) Yasuhiro A., Shuichi N., Jun-ichi M., Katsuma H., Masayoshi O. Angew. Chem.
Int. Ed. 2005, 44, 5509 –5513.
(69) Christina M. S.-H., Roland S., Karl K., Kurt M. Monatshefte für Chemie 2004,
135, 911–917.