簡易檢索 / 詳目顯示

研究生: 楊智舜
Yang, Chi-Shun
論文名稱: 昆蟲自動化計數與分類控制平台 ─ 以果蠅為例
Automated Counting and Classification of Insect Control System – in Drosophila
指導教授: 陳榮順
Chen, Rongshun
口試委員: 黃安橋
蔡宏營
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 昆蟲刺激行為監測平台基因工程昆蟲計數LabVIEW控制
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   黑腹果蠅具備完整的基因序列分析,且基因改造技術與行為模式研究成熟,生命週期短、培養容易、飼養成本低、與人類基因相似度更高達60 %相同,故廣泛作為研究人類基因之跳板。由於果蠅實驗需要大量實驗數據進行生物統計,而傳統上繁複的果蠅分類與計數工作皆以人工方式完成,不僅相當耗費人力與時間,也易因人工疏失產生誤差,且每次進行的實驗數目亦有限,無法有效率得到大量實驗數據。為此,本研究提出以果蠅為例之昆蟲自動化計數與分類控制平台,期望能以自動化方式實現大規模進行實驗之可能。
      本研究設計果蠅輸送計數系統與處女果蠅性別辨識控制載台,藉由自行設計之光電傳感器模組與LabVIEW人機介面,實現對果蠅計數之目標,以一百隻果蠅為例,利用果蠅計數系統進行自動計數與人工計數比較後所得之準確度達96.8 %。處女果蠅性別辨識控制載台,則與機械視覺辨識系統結合,以果蠅腹部特徵點辨識性別,利用果蠅之天生習性驅使與抽氣輔助方式對剛羽化之果蠅進行蒐集控制,順利實現辨識未交配果蠅之公母性別並同時進行蒐集。實際應用於果蠅實驗中,即可大量節省珍貴之實驗人力與時間。


    第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.3 本文大綱 11 第二章 系統架構與分析 12 2.1 果蠅輸送計數系統 12 2.1.1 光電傳感器計數原理 13 2.1.2 光電傳感器與果蠅輸送系統 15 2.2 處女果蠅性別辨識控制載台 16 2.2.1 處女果蠅應用與性別辨識方法 17 2.2.2 處女果蠅蒐集方法 20 2.3 結果與討論 23 第三章 果蠅監控平台 24 3.1 果蠅輸送計數實驗平台 24 3.2 處女果蠅性別辨識平台 31 3.2.1 果蠅誘引入口區 32 3.2.2 果蠅影像檢測區 37 3.2.3 果蠅分類蒐集管 38 3.3 LabVIEW人機介面監控系統 41 3.4 結果與討論 47 第四章 實驗結果與討論 48 4.1 果蠅計數實驗成果 48 4.1.1 無行為能力果蠅計數實驗成果 48 4.1.2 活體果蠅計數實驗成果 55 4.2 處女果蠅性別辨識實驗成果 57 4.3 結果與討論 63 第五章 結論與未來工作 64 5.1 結論 64 5.2 未來工作 65 參考文獻 66

    [1] http://www.selfdiscoveryportal.com/.

    [2] http://www.hoxfulmonsters.com/.

    [3] R. S. McEwen, "The reactions to light and to gravity in Drosophila and its mutants," Journal of Experimental Zoology, vol. 25, pp. 49-106, 1918.

    [4] T. Tully and W. G. Quinn, "Classical-conditioning and retention in normal and mutant Drosophila-melanogaster," Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, vol. 157, pp. 263-277, 1985.

    [5] R. J. Gegear, A. Casselman, S. Waddell, and S. M. Reppert, "Cryptochrome mediates light-dependent magnetosensitivity in Drosophila," Nature, vol. 454, pp. 1014-1018, 2008.

    [6] R. Wolf and M. Heisenberg, "Basic organization of operant-behavior as revealed in Drosophila flight orientation," Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, vol. 169, pp. 699-705, 1991.

    [7] T. Kaneuchi, T. Togawa, T. Matsuo, Y. Fuyama, and T. Aigaki, "Efficient measurement of H2O2 resistance in Drosophila using an activity monitor," Biogerontology, vol. 4, pp. 157-165, 2003.

    [8] S. Zappe, M. Fish, M. P. Scott, and O. Solgaard, "Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens," Lab on a Chip, vol. 6, p. 1012, 2006.

    [9] D. Houle, J. Mezey, P. Galpern, and A. Carter, "Automated measurement of drosophila wings," Bmc Evolutionary Biology, vol. 3, 2003.

    [10] K. Branson, A. A. Robie, J. Bender, P. Perona, and M. H. Dickinson, "High-throughput ethomics in large groups of Drosophila," Nature Methods, vol. 6, pp. 451-477, 2009.

    [11] H. H. Lin, J. S. Y. Lai, A. L. Chin, Y. C. Chen, and A. S. Chiang, "A map of olfactory representation in the Drosophila mushroom body," Cell, vol. 128, pp. 1205-1217, 2007.

    [12] J. D. Feala, J. H. Omens, G. Paternostro, and A. D. McCulloch, "Discovering regulators of the Drosophila cardiac hypoxia response using automated phenotyping technology," Annals of the New York Academy of Sciences, vol. 1123, pp. 169-177, 2008.

    [13] N. Agrawal, "Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila," Proceedings of the National Academy of Sciences, vol. 102, pp. 3777-3781, 2005.

    [14] L. B. Vosshall, "Into the mind of a fly," Nature, vol. 450, pp. 193-197, 2007.

    [15] J. Krupp, C. Kent, J. Billeter, R. Azanchi, A. So, J. Schonfeld, B. Smith, C. Lucas, and J. Levine, "Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster," Current Biology, vol. 18, pp. 1373-1383, 2008.

    [16] S. Mundiyanapurath, S. Certel, and E. A. Kravitz, "Studying aggression in Drosophila (fruit flies)," Journal of Visualized Experiments, 2007.

    [17] E. Tauber, H. Roe, R. Costa, J. M. Hennessy, and C. P. Kyriacou, "Temporal mating isolation driven a behavioral gene in Drosophila," Current Biology, vol. 13, pp. 140-145, 2003.

    [18] J. Y. Yu, M. I. Kanai, E. Demir, G. S. X. E. Jefferis, and B. J. Dickson, "Cellular organization of the neural circuit that drives Drosophila courtship behavior," Current Biology, vol. 20, pp. 1602-1614, 2010.

    [19] S. Boynton and T. Tully, "Latheo, a new gene involved in associative learning and memory in Drosophila-melanogaster, identified from p-element mutagenesis," Genetics, vol. 131, pp. 655-672, 1992.
    [20] J. C. Hendricks, S. M. Finn, K. A. Panckeri, J. Chavkin, J. A. Williams, A. Sehgal, and A. I. Pack, "Rest in Drosophila is a sleep-like state," Neuron, vol. 25, pp. 129-138, 2000.

    [21] TriKinetic, Inc., http://www.trikinetics.com/.

    [22] 江昭皚, 盧福明, 楊恩誠, 曾傳蘆, 廖國基與嚴崇瑋, "東方果實蠅生態監測與預警系統 " 自動化科技學會會刊, pp. 54-65, 2009.

    [23] H. Dankert, L. Wang, E. D. Hoopfer, D. J. Anderson, and P. Perona, "Automated monitoring and analysis of social behavior in Drosophila," Nature Methods, vol. 6, pp. 297-303, 2009.

    [24] Kodenshi, Inc., http://www.kodenshi.co.jp/english/.

    [25] OMRON, Inc., http://www.omron.com/.

    [26] http://bbs.instrument.com.cn/shtml/20091009/2148560/.

    [27] M. E. Dillon and M. R. Frazier, "Drosophila melanogaster locomotion in cold thin air," Journal of Experimental Biology, vol. 209, pp. 364-371, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE