簡易檢索 / 詳目顯示

研究生: 劉家琪
Liu, Chia-Chi
論文名稱: 探討沒食子酸月桂酯在作為腦癌治療治劑的潛力
Investigation of Lauryl Gallate as a Therapeutic Agent for Brain Tumors
指導教授: 江啟勳
Chiang, Chi-Shiun
口試委員: 鍾景光
陳芳馨
Chen, Fang-Hsin
王述綺
Wang, SHu-Chi
張建文
Chang, Chien-Wen
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 83
中文關鍵詞: 沒食子酸月桂酯腦癌細胞凋亡
外文關鍵詞: Lauryl Gallate, Brain Tumors, Apoptosis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦癌目前在醫學上的治療方法,仍然是極度缺乏的,而神經膠質瘤又是腦癌分類中最惡性的一種。過去有許多從天然物中尋找抗癌藥物的例子,例如紫杉醇、長春花鹼等等。Lauryl gallate (LG) 是一種廣泛存在於植物中的抗氧化成分,而許多文獻也曾報導在許多人類癌細胞中具有抗癌的活性,但是尚未被證實於人類的腦癌細胞中,因此本研究著重於利用人類神經膠質瘤細胞U87及小鼠神經膠質瘤細胞ALTS1C1當作抗癌活性的驗證平台。
    在使用LG處理腦癌細胞實驗的過程中,我們觀察藥物處理前後癌細胞的型態和存活率的改變,以及Annexin V/PI雙染的實驗,來評估細胞凋亡的程度。在人類腦癌U87細胞中,發現LG處理後的細胞凋亡路徑是藉由caspase dependent的訊息傳遞路徑所造成;並且也使用西方墨點法來驗證LG可以誘發許多與細胞凋亡相關的蛋白質表現。而在體外細胞遷移的實驗中,也觀察到LG可以抑制U87人類腦癌細胞的轉移,同時在小鼠神經膠質瘤的實驗中也證實,LG造成ALTS1C1小鼠腦癌細胞的細胞凋亡,並且降低細胞的轉移;在活體癌症動物模型中,LG可以延緩小鼠腫瘤的生長。而在免疫螢光染色的切片中,也發現使用LG的小鼠腫瘤切片,HIF-2α和腫瘤缺氧(PIMO)的表現也是下降的。動物心臟超音波測量也證實小鼠在LG處理下不會影響左心室收縮和舒張的距離,即為左心室的縮短分率沒有改變,也就是證實LG在小鼠癌症模型中,連續投予80 mg/kg的LG並不會有心臟毒性的產生。
    因此,我們在以上實驗結果發現LG可以造成U87和ALTS1C1細胞的型態改變,並且降低其存活率,是藉由細胞凋亡及caspase的路徑。另外,LG也會調控細胞中的缺氧因子蛋白的表現。本篇研究在人類及小鼠神經膠質瘤的實驗上證實LG在細胞上及小鼠動物實驗中具有抗腦癌的療效。


    Glioblastoma is the most frequent glioma, consisting of 65% glioma. However, treatment of human glioma tumor is still an unmet medical need. Natural products are always promising resources for discovery of anticancer drugs. Lauryl gallate (LG) is one of the derivatives of gallic acid, widely present in plants, and has been shown to induce anticancer activities in many human cancer cell lines; however, it has not been studied in human glioma cell lines. Thus, the effects of LG on human glioblastoma ,U87 cells, and mouse astrocytoma, ALTS1C1 cells, were investigated in the present in-vitro and in-vivo. Cell morphology and viability were examined by phase-contrast microscopy. Annexin V/Propidium iodide (PI) double staining were performed and assayed by flow cytometry to investigate whether LG-induced cell death was due to the induction of apoptosis. Furthermore, LG-treated U87 cells were analyzed by caspase activity assay at various concentrations. To further demonstrate the mechanism of LG-induced apoptotic cell death, the expression of apoptosis-associated proteins were examined in U87 and ALTS1C1 cells after LG treatment by western blot. In this study, LG-induced morphological changes and decreased cell viability in U87 and ALTS1C1 cells were demonstrated. Annexin V/PI double staining exhibited that LG induced apoptosis in U87 and ALTS1C1 cells in a dose-dependent manner. The increased activities of caspase-2, -3, -8 and -9 demonstrated that LG induced apoptosis of U87 cells through a caspase-dependent pathway. In terms of molecular level, LG increased pro-apoptotic proteins (Bax and Bak) and decreased anti-apoptotic protein (Bcl-2) in U87 and ALTS1C1 cells. Moreover, LG also showed tumor growth delay in a mouse ALTS1C1 allograft tumor model. We also examined the heart fraction shorting (FS) to evaluate the drug cardiotoxicity by mouse echocardiography. The results showed that LG had no cardiotoxicity in the allograft brain tumor model because there were no significant changes of the heart left ventricular (LV) diameter.

    摘要 I Abstract II 致謝 IV Contents V Figures VII Tables IX 1. Introduction 1 1.1 Glioblastoma Introduction 1 1.2 Classification of Brain Tumors 2 1.3 Tumor Grading 3 1.4 Subtypes of Glioblastoma Multiforme 3 1.5 Etiology 4 1.6 Pathophysiology 6 1.7 Symptoms 12 1.8 Diagnosis 13 1.9 Prognosis 16 1.10 Epidemiology 16 1.11 Treatment Options 17 1.12 Treatment Algorithm 24 1.13 Lauryl Gallates 25 1.14 Echocardiography 26 2. Materials and Methods 28 2.1 Chemicals and reagents 28 2.2 Cell culture 28 2.3 Animals 29 2.4 Tumor implantation 29 2.5 Cell morphological changes and viability assay. 29 2.6 Cell cycle distribution determination 30 2.7 Analysis of reactive oxygen species (ROS) 30 2.8 Apoptotic cell death assay 30 2.9 Measurement of caspase-2, -3, -8, -9 and -12 activities. 31 2.10 Western blotting analysis. 31 2.11 Immunocytochemistry 32 2.12 Immunohistochemistry 33 2.13 Migration Assay 33 2.14 Echocardiography 33 2.15 Statistical analysis. 34 3. Results 35 3.1 LG induced cell morphological changes and decreased cell viability in U87 and ALTS1C1 cells. 35 3.2 LG induced apoptotic cell death in U87 and ALTS1C1 cells. 35 3.3 LG affected the enzymatic activity of Caspase-2, -3, -8, -9 and -12 in U87 cells. 36 3.4 LG altered apoptosis-associated protein expression in U87 cells. 36 3.5 LG inhibited cell migration in ALTS1C1 and U87 cells 38 3.6 LG inhibits the growth of glioblastoma allograft in mouse model 38 3.7 LG exhibited no cardiotoxicity in tumor-bearing mice by using echocardiography 39 4. Discussion 40 5. Reference72

    reference

    1. Behin, A., et al., Primary brain tumours in adults. Lancet, 2003. 361(9354): p. 323-31.
    2. Ohgaki, H., P. Burger, and P. Kleihues, Definition of primary and secondary glioblastoma--response. Clin Cancer Res, 2014. 20(7): p. 2013.
    3. https://cancerstatisticscenter.cancer.org.
    4. Malaguarnera, L., E. Cristaldi, and M. Malaguarnera, The role of immunity in elderly cancer. Crit Rev Oncol Hematol, 2010. 74(1): p. 40-60.
    5. Merrell, R.T., Brain tumors. Dis Mon, 2012. 58(12): p. 678-89.
    6. Brandes, A.A., et al., Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol, 2008. 10(3): p. 361-7.
    7. http://www.cancerresearchuk.org/.
    8. Liu, C. and H. Zong, Developmental origins of brain tumors. Curr Opin Neurobiol, 2012. 22(5): p. 844-9.
    9. Batistatou, A., Mitoses and cancer. Med Hypotheses, 2004. 63(2): p. 281-2.
    10. Ohgaki, H. and P. Kleihues, The definition of primary and secondary glioblastoma. Clin Cancer Res, 2013. 19(4): p. 764-72.
    11. Sasmita, A.O., Y.P. Wong, and A.P.K. Ling, Biomarkers and therapeutic advances in glioblastoma multiforme. Asia Pac J Clin Oncol, 2018. 14(1): p. 40-51.
    12. Adamson, C., et al., Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs, 2009. 18(8): p. 1061-83.
    13. Magnavita, N., et al., Occupational head injury and subsequent glioma. Neurol Sci, 2003. 24(1): p. 31-3.
    14. Preston-Martin, S., et al., An international case-control study of adult glioma and meningioma: the role of head trauma. Int J Epidemiol, 1998. 27(4): p. 579-86.
    15. Salvati, M., et al., Radiation-induced gliomas: report of 10 cases and review of the literature. Surg Neurol, 2003. 60(1): p. 60-7; discussion 67.
    16. Ohgaki, H. and P. Kleihues, Epidemiology and etiology of gliomas. Acta Neuropathol, 2005. 109(1): p. 93-108.
    17. https://pdfs.semanticscholar.org, A Dead End: A Review of Glioblastoma Multiforme. 2012.
    18. https://www.abta.org/tumor_types/glioblastoma-gbm/.
    19. McKinney, P.A., Brain tumours: incidence, survival, and aetiology. J Neurol Neurosurg Psychiatry, 2004. 75 Suppl 2: p. ii12-7.
    20. Kanu, O.O., et al., Glioblastoma Multiforme Oncogenomics and Signaling Pathways. Clin Med Oncol, 2009. 3: p. 39-52.
    21. Ohgaki, H. and P. Kleihues, Genetic pathways to primary and secondary glioblastoma. Am J Pathol, 2007. 170(5): p. 1445-53.
    22. Nakamura, M., et al., Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol, 2000. 59(6): p. 539-43.
    23. Ohgaki, H. and P. Kleihues, Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol, 2005. 64(6): p. 479-89.
    24. Verhaak, R.G., et al., Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010. 17(1): p. 98-110.
    25. Kakkar, A., et al., Loss of heterozygosity on chromosome 10q in glioblastomas, and its association with other genetic alterations and survival in Indian patients. Neurol India, 2011. 59(2): p. 254-61.
    26. Yoshimoto K, M.M., Hata N, Murata H, Hatae R, Amano T, Nakamizo A, Sasaki T., Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front Oncol.
    27. An, Z., et al., Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene, 2018. 37(12): p. 1561-1575.
    28. Scaltriti, M. and J. Baselga, The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res, 2006. 12(18): p. 5268-72.
    29. Padfield E, E.H., Kurian KM, Current Therapeutic Advances Targeting EGFR and EGFRvIII in Glioblastoma. Front Oncol., 2015.
    30. Vivanco, I., et al., Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov, 2012. 2(5): p. 458-71.
    31. Brennan C, M.H., Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E, Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One, 2009.
    32. Wiencke, J.K., et al., Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol, 2007. 9(3): p. 271-9.
    33. Bogler, O., et al., The p53 gene and its role in human brain tumors. Glia, 1995. 15(3): p. 308-27.
    34. Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13(12): p. 1501-12.
    35. Kamijo, T., et al., Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A, 1998. 95(14): p. 8292-7.
    36. Zhao, S., et al., Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science, 2009. 324(5924): p. 261-5.
    37. Dang, L., et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009. 462(7274): p. 739-44.
    38. Sasaki, M., et al., D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev, 2012. 26(18): p. 2038-49.
    39. Della Puppa, A., et al., MGMT expression and promoter methylation status may depend on the site of surgical sample collection within glioblastoma: a possible pitfall in stratification of patients? J Neurooncol, 2012. 106(1): p. 33-41.
    40. Hegi, M.E., et al., MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med, 2005. 352(10): p. 997-1003.
    41. Morandi, L., et al., Promoter methylation analysis of O6-methylguanine-DNA methyltransferase in glioblastoma: detection by locked nucleic acid based quantitative PCR using an imprinted gene (SNURF) as a reference. BMC Cancer, 2010. 10: p. 48.
    42. Nakamura, M., et al., Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C --> A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis, 2001. 22(10): p. 1715-9.
    43. Thon, N., S. Kreth, and F.W. Kreth, Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Ther, 2013. 6: p. 1363-72.
    44. Marsh, H., Brain tumors. Suegery, 2009. 27(3): p. 135-138.
    45. Taylor, L.P., Diagnosis, treatment, and prognosis of glioma: five new things. Neurology, 2010. 75(18 Suppl 1): p. S28-32.
    46. Babu, V.T.a.H., Recurrent Malignant Primary Brain Tumor: the Pathophysiology and Management. IntechOpen, 2011.
    47. Jain, R., Perfusion CT imaging of brain tumors: an overview. AJNR Am J Neuroradiol, 2011. 32(9): p. 1570-7.
    48. B, T., Glioblastoma cure remains elusive despite treatment advances. OncoLog, 2011.
    49. https://cancerstatisticscenter.cancer.org, 2016.
    50. Rubin, P., et al., Cancer genesis across the age spectrum: associations with tissue development, maintenance, and senescence. Semin Radiat Oncol, 2010. 20(1): p. 3-11.
    51. Yaneva, M.P., et al., Postoperative chemo-radiotherapy with temodal in patients with glioblastoma multiforme--survival rates and prognostic factors. Folia Med (Plovdiv), 2010. 52(1): p. 26-33.
    52. Stewart, L.A., Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet, 2002. 359(9311): p. 1011-8.
    53. Cohen, M.H., et al., FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist, 2009. 14(11): p. 1131-8.
    54. Lacroix, M., et al., A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg, 2001. 95(2): p. 190-8.
    55. Kristiansen, K., et al., Combined modality therapy of operated astrocytomas grade III and IV. Confirmation of the value of postoperative irradiation and lack of potentiation of bleomycin on survival time: a prospective multicenter trial of the Scandinavian Glioblastoma Study Group. Cancer, 1981. 47(4): p. 649-52.
    56. Walker, M.D., et al., Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg, 1978. 49(3): p. 333-43.
    57. Barbarite, E., et al., The role of brachytherapy in the treatment of glioblastoma multiforme. Neurosurg Rev, 2017. 40(2): p. 195-211.
    58. Radiation Therapy for Brain Tumors. Texas Oncology, 2014.
    59. Wesolowski, J.R., P. Rajdev, and S.K. Mukherji, Temozolomide (Temodar). AJNR Am J Neuroradiol, 2010. 31(8): p. 1383-4.
    60. Stupp, R., et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005. 352(10): p. 987-96.
    61. Kitange, G.J., et al., Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol, 2009. 11(3): p. 281-91.
    62. Friedman, H.S., et al., Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol, 2009. 27(28): p. 4733-40.
    63. Liu, C.C., et al., Sigma-2 receptor/TMEM97 agonist PB221 as an alternative drug for brain tumor. BMC Cancer, 2019. 19(1): p. 473.
    64. Alon, A., et al., Identification of the gene that codes for the sigma2 receptor. Proc Natl Acad Sci U S A, 2017. 114(27): p. 7160-7165.
    65. Huang, Y.S., et al., Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy. Med Res Rev, 2014. 34(3): p. 532-66.
    66. Qiu, G., et al., RNA interference against TMEM97 inhibits cell proliferation, migration, and invasion in glioma cells. Tumour Biol, 2015. 36(10): p. 8231-8.
    67. Reithmeier, T., et al., BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors. BMC Cancer, 2010. 10: p. 30.
    68. Martin, M., et al., Phase II study of bevacizumab in combination with trastuzumab and capecitabine as first-line treatment for HER-2-positive locally recurrent or metastatic breast cancer. Oncologist, 2012. 17(4): p. 469-75.
    69. Agarwal, S., et al., Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab Dispos, 2013. 41(1): p. 33-9.
    70. Stupp, R., et al., High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2010. 21 Suppl 5: p. v190-3.
    71. Brem, H., et al., Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet, 1995. 345(8956): p. 1008-12.
    72. Stupp, R., et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol, 2009. 10(5): p. 459-66.
    73. AC, S.J.a.K., Adult CNS Malignancies: Update on Brain Tumors. ONCOLOGY, 2013.
    74. van der Heijden, C.A., P.J. Janssen, and J.J. Strik, Toxicology of gallates: a review and evaluation. Food Chem Toxicol, 1986. 24(10-11): p. 1067-70.
    75. Klein, E. and N. Weber, In vitro test for the effectiveness of antioxidants as inhibitors of thiyl radical-induced reactions with unsaturated fatty acids. J Agric Food Chem, 2001. 49(3): p. 1224-7.
    76. Kubo, I., et al., Antibacterial activity of akyl gallates against Bacillus subtilis. J Agric Food Chem, 2004. 52(5): p. 1072-6.
    77. Kubo, I., P. Xiao, and K. Fujita, Antifungal activity of octyl gallate: structural criteria and mode of action. Bioorg Med Chem Lett, 2001. 11(3): p. 347-50.
    78. Savi, L.A., et al., Evaluation of anti-herpetic and antioxidant activities, and cytotoxic and genotoxic effects of synthetic alkyl-esters of gallic acid. Arzneimittelforschung, 2005. 55(1): p. 66-75.
    79. Saeki, K., et al., Apoptosis-inducing activity of lipid derivatives of gallic acid. Biol Pharm Bull, 2000. 23(11): p. 1391-4.
    80. Locatelli, C., et al., Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death. Chem Biol Interact, 2009. 181(2): p. 175-84.
    81. Calcabrini, A., et al., Inhibition of proliferation and induction of apoptosis in human breast cancer cells by lauryl gallate. Carcinogenesis, 2006. 27(8): p. 1699-712.
    82. Ortega, E., et al., Tumoricidal activity of lauryl gallate towards chemically induced skin tumours in mice. Br J Cancer, 2003. 88(6): p. 940-3.
    83. Locatelli, C., et al., Ester derivatives of gallic acid with potential toxicity toward L1210 leukemia cells. Bioorg Med Chem, 2008. 16(7): p. 3791-9.
    84. Rothbarth, J., A.L. Vahrmeijer, and G.J. Mulder, Modulation of cytostatic efficacy of melphalan by glutathione: mechanisms and efficacy. Chem Biol Interact, 2002. 140(2): p. 93-107.
    85. Oronsky, B.T., S.J. Knox, and J.J. Scicinski, Is Nitric Oxide (NO) the Last Word in Radiosensitization? A Review. Transl Oncol, 2012. 5(2): p. 66-71.
    86. Tanaka, H., Echocardiography and cancer therapeutics-related cardiac dysfunction. J Med Ultrason (2001), 2019.
    87. Wang, Z., et al., Paeoniflorin Inhibits Migration and Invasion of Human Glioblastoma Cells via Suppression Transforming Growth Factor beta-Induced Epithelial-Mesenchymal Transition. Neurochem Res, 2018. 43(3): p. 760-774.
    88. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62.
    89. Zhang, X., et al., Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Res, 2010. 30(3): p. 915-21.
    90. Liu, K.C., et al., The roles of AIF and Endo G in the apoptotic effects of benzyl isothiocyanate on DU 145 human prostate cancer cells via the mitochondrial signaling pathway. Int J Oncol, 2011. 38(3): p. 787-96.
    91. Roy, G., et al., Mechanistic aspects of the induction of apoptosis by lauryl gallate in the murine B-cell lymphoma line Wehi 231. Arch Biochem Biophys, 2000. 383(2): p. 206-14.
    92. Zanotto-Filho, A., et al., NFkappaB inhibitors induce cell death in glioblastomas. Biochem Pharmacol, 2011. 81(3): p. 412-24.
    93. Nogueira, L., et al., The NFkappaB pathway: a therapeutic target in glioblastoma. Oncotarget, 2011. 2(8): p. 646-53.
    94. Serrano, A., et al., Derivatives of gallic acid induce apoptosis in tumoral cell lines and inhibit lymphocyte proliferation. Arch Biochem Biophys, 1998. 350(1): p. 49-54.
    95. Liu, K.C., et al., Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells. Am J Chin Med, 2016. 44(6): p. 1289-1310.
    96. Chou, W.H., et al., Ouabain Induces Apoptotic Cell Death Through Caspase- and Mitochondria-dependent Pathways in Human Osteosarcoma U-2 OS Cells. Anticancer Res, 2018. 38(1): p. 169-178.
    97. Sarosiek, K.A., T. Ni Chonghaile, and A. Letai, Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol, 2013. 23(12): p. 612-9.
    98. Verheij, M., C. Vens, and B. van Triest, Novel therapeutics in combination with radiotherapy to improve cancer treatment: rationale, mechanisms of action and clinical perspective. Drug Resist Updat, 2010. 13(1-2): p. 29-43.
    99. Yang, Y., et al., Levistolide A Induces Apoptosis via ROS-Mediated ER Stress Pathway in Colon Cancer Cells. Cell Physiol Biochem, 2017. 42(3): p. 929-938.
    100. Khazaei, S., et al., Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines. Evid Based Complement Alternat Med, 2017. 2017: p. 1468957.
    101. Lin, C.H., et al., Ethyl acetate fraction from methanol extraction of Vitis thunbergii var. taiwaniana induced G0 /G1 phase arrest via inhibition of cyclins D and E and induction of apoptosis through caspase-dependent and -independent pathways in human prostate carcinoma DU145 cells. Environ Toxicol, 2018. 33(1): p. 41-51.
    102. Xiao, X., et al., Pregnenolone, a cholesterol metabolite, induces glioma cell apoptosis via activating extrinsic and intrinsic apoptotic pathways. Oncol Lett, 2014. 8(2): p. 645-650.
    103. Adams, J.M. and S. Cory, The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007. 26(9): p. 1324-37.
    104. Su, Z.Y., et al., Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways. J Agric Food Chem, 2011. 59(9): p. 5109-16.
    105. Yip, K.W. and J.C. Reed, Bcl-2 family proteins and cancer. Oncogene, 2008. 27(50): p. 6398-406.
    106. Youle, R.J. and A. Strasser, The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 2008. 9(1): p. 47-59.
    107. Semenza, G.L., Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev, 1998. 8(5): p. 588-94.
    108. Vordermark, D., In regard to DAI et al.: inhibition of hypoxia inducible factor 1alpha causes oxygen-independent cytotoxicity and induces p53 independent apoptosis in glioblastoma cells. IJROBP 2003;55:1027-1036). Int J Radiat Oncol Biol Phys, 2003. 57(4): p. 1196.
    109. Erler, J.T., et al., Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol, 2004. 24(7): p. 2875-89.
    110. Lou, S., et al., Curcumin induces apoptosis and inhibits proliferation in infantile hemangioma endothelial cells via downregulation of MCL-1 and HIF-1alpha. Medicine (Baltimore), 2018. 97(7): p. e9562.
    111. Janku, F., Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat Rev, 2017. 59: p. 93-101.
    112. Elghazi, L. and E. Bernal-Mizrachi, Akt and PTEN: beta-cell mass and pancreas plasticity. Trends Endocrinol Metab, 2009. 20(5): p. 243-51.
    113. Kapodistria, K., et al., Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol, 2015. 400: p. 112-28.
    114. Mukherjee, B., et al., EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res, 2009. 69(10): p. 4252-9.
    115. Luo, Z., et al., Silencing of HIF-1alpha enhances the radiation sensitivity of human glioma growth in vitro and in vivo. Neuropharmacology, 2015. 89: p. 168-74.
    116. Holmquist-Mengelbier, L., et al., Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell, 2006. 10(5): p. 413-23.
    117. Rosso, R., et al., Relationship between the lipophilicity of gallic acid n-alquil esters' derivatives and both myeloperoxidase activity and HOCl scavenging. Bioorg Med Chem, 2006. 14(18): p. 6409-13.
    118. Chuang, Y.C., et al., Blockade of ITGA2 Induces Apoptosis and Inhibits Cell Migration in Gastric Cancer. Biol Proced Online, 2018. 20: p. 10.
    119. Araiza-Olivera, D., et al., Suppression of RAC1-driven malignant melanoma by group A PAK inhibitors. Oncogene, 2018. 37(7): p. 944-952.
    120. Dummler, B., et al., Pak protein kinases and their role in cancer. Cancer Metastasis Rev, 2009. 28(1-2): p. 51-63.
    121. Pramanik, K.C., et al., Inhibition of beta-catenin signaling suppresses pancreatic tumor growth by disrupting nuclear beta-catenin/TCF-1 complex: critical role of STAT-3. Oncotarget, 2015. 6(13): p. 11561-74.

    QR CODE