研究生: |
吳長樺 Wu Chang-Hua |
---|---|
論文名稱: |
探討斑馬魚發育過程中GluR1與GluR2之表現模式 Studies of expression patterns of GluR1 and GluR2 during zebrafish development |
指導教授: |
周姽嫄
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
中文關鍵詞: | 麩胺酸受器 、斑馬魚 、神經發育 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
麩胺酸受器是脊椎動物中樞神經系統主要的興奮性神經傳導物質之受器。離子通道型麩胺酸受器依藥理學與電生理學的性質可分為AMPA受器、Kainate受器及NMDA受器。麩胺酸受器C端區域能夠與細胞內一些蛋白質產生交互作用,影響麩胺酸受器在細胞膜上的數量及穩定性,為了解在斑馬魚發育過程中GluR1a、GluR2a和GluR2b不同C端形式的表現模式,我們以RT-PCR進行分析,結果顯示在斑馬魚發育過程中,GluR1a以GluR1ac RNA的表現為主,而GluR1a/GluR1ac的比例會隨著斑馬魚發育而增加;GluR2a在胚體發育10小時之前,有較多GluR2ac的RNA量,當胚體發育24小時之後,則有較多GluR2a RNA產生;GluR2b/GluR2bc的比例在發育過程中則無明顯變化,以GluR2b RNA表現為主,因此不同C端形式的麩胺酸受器可能多以其中一種形式主要表現於個體中。以RT-PCR和即時定量PCR分析顯示,在胚體發育早期之麩胺酸RNA為maternal RNA,此maternal RNA會隨胚體逐漸發育而減少,在胚體發育8至10小時之間已無法偵測,在胚體發育10小時之後,麩酸受器RNA的量才逐漸增加。然而GluR1a和GluR1b在之後的發育過程中RNA表現的模式並不一致,GluR2a和GluR2b RNA的表現也不盡相同。可能是由於兩個GluR1同源體和GluR2兩個同源體各自具有不同功能,在發育過程中各自具受到不同的機制調控所產生之結果。
Ionotropic glutamate receptors (iGluRs) mediate excitatory synaptic transmission in the vertebrate CNS. Based on pharmacological and electrophysiological criteria, iGluRs have been traditionally classified into three major subtypes: AMPA, kainate, and NMDA receptors. The C-terminus of AMPA receptors is intracellular and is involved in receptor anchoring. In this study, we examined the expression patterns of GluR1a, GluR2a, and GluR2b C-terminal alternative splicing isoforms by RT-PCR. We found that during zebrafish development, the GluR1ac (the long C-terminus isoform) RNA is more abundant than GluR1a (the short C-terminus isoform) at all stages, and the ratio between GluR1a and GluR1ac increases with the development. The GluR2ac (the long C-terminus isoform) RNA is more abundant than GluR2a (the short C-terminus isoform) before 10 hpf, but the GluR2a RNA increases dramatically at 24 hpf and remains as the dominant form thereafter. There is no significant change of RNA expression between GluR2b (the short C-terminus isoform) and GluR2bc (the long C-terminus isoform) at all stages, where GluR2b is the major form. RT-PCR also reveals the existence of maternally transcribed glutamate receptor RNAs, but the amounts of these maternal RNAs decline to a non-detectable level by 8 to 10 hpf. The glutamate receptor RNAs levels then increase gradually after 10 hpf. GluR1a and GluR1b RNAs expression patterns differ at later developmental stages and so do GluR2a and GluR2b. These results show that the gene expression patterns of the paralogous genes differ, suggesting that the functions of these genes may be different.
Arai, Y., Mizuguchi, M., and Takashima, S. (1996). Excessive glutamate receptor 1 immunoreactivity in adult Down syndrome brains. Pediatr Neurol 15, 203-206.
Bahn, S., Volk, B., and Wisden, W. (1994). Kainate receptor gene expression in the developing rat brain. J Neurosci 14, 5525-5547.
Bennett, J. A., and Dingledine, R. (1995). Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 14, 373-384.
Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O'Shea-Greenfield, A., Deneris, E. S., Moll, C., Borgmeyer, U., Hollmann, M., and Heinemann, S. (1990). Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583-595.
Buchan, A. M., Li, H., Cho, S., and Pulsinelli, W. A. (1991). Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats. Neurosci Lett 132, 255-258.
Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29, 23-39.
Cartmell, J., and Schoepp, D. D. (2000). Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75, 889-907.
Chung, H. J., Xia, J., Scannevin, R. H., Zhang, X., and Huganir, R. L. (2000). Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 20, 7258-7267.
Constantine-Paton, M., and Cline, H. T. (1998). LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr Opin Neurobiol 8, 139-148.
DiFiglia, M. (1990). Excitotoxic injury of the neostriatum: a model for Huntington's disease. Trends Neurosci 13, 286-289.
Durand, G. M., and Zukin, R. S. (1993). Developmental regulation of mRNAs encoding rat brain kainate/AMPA receptors: a northern analysis study. J Neurochem 61, 2239-2246.
Feldman, D. E., and Knudsen, E. I. (1998). Pharmacological specialization of learned auditory responses in the inferior colliculus of the barn owl. J Neurosci 18, 3073-3087.
Gallo, V., Upson, L. M., Hayes, W. P., Vyklicky, L., Jr., Winters, C. A., and Buonanno, A. (1992). Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum. J Neurosci 12, 1010-1023.
Gilbert, M. E. (1988). The NMDA-receptor antagonist, MK-801, suppresses limbic kindling and kindled seizures. Brain Res 463, 90-99.
Gu, J. G., Albuquerque, C., Lee, C. J., and MacDermott, A. B. (1996). Synaptic strengthening through activation of Ca2+-permeable AMPA receptors. Nature 381, 793-796.
Herb, A., Burnashev, N., Werner, P., Sakmann, B., Wisden, W., and Seeburg, P. H. (1992). The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775-785.
Higuchi, R., Dollinger, G., Walsh, P. S., and Griffith, R. (1992). Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y) 10, 413-417.
Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. (1993). Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 11, 1026-1030.
Hod, Y. (1992). A simplified ribonuclease protection assay. Biotechniques 13, 852-854.
Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G., and Heinemann, S. (1993). Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943-954.
Hollmann, M., Hartley, M., and Heinemann, S. (1991). Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Science 252, 851-853.
Hollmann, M., Maron, C., and Heinemann, S. (1994). N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13, 1331-1343.
Israeli, R. S., Miller, W. H., Jr., Su, S. L., Powell, C. T., Fair, W. R., Samadi, D. S., Huryk, R. F., DeBlasio, A., Edwards, E. T., Wise, G. J., and et al. (1994). Sensitive nested reverse transcription polymerase chain reaction detection of circulating prostatic tumor cells: comparison of prostate-specific membrane antigen and prostate-specific antigen-based assays. Cancer Res 54, 6306-6310.
Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B., and Seeburg, P. H. (1990). A family of AMPA-selective glutamate receptors. Science 249, 556-560.
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics 203:253-310 (1995) Dev Dyn 203, 253-310.
Kohler, M., Kornau, H. C., and Seeburg, P. H. (1994). The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J Biol Chem 269, 17367-17370.
Laurie, D. J., and Seeburg, P. H. (1994). Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 14, 3180-3194.
Lilliu, V., Perrone-Capano, C., Pernas-Alonso, R., Diaz Trelles, R., Luca Colucci d'Amato, G., Zuddas, A., and di Porzio, U. (2002). Ontogeny of kainate receptor gene expression in the developing rat midbrain and striatum. Brain Res Mol Brain Res 104, 1-10.
Martin, L. J., Furuta, A., and Blackstone, C. D. (1998). AMPA receptor protein in developing rat brain: glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience 83, 917-928.
Mayer, M. L., and Westbrook, G. L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28, 197-276.
Meguro, H., Mori, H., Araki, K., Kushiya, E., Kutsuwada, T., Yamazaki, M., Kumanishi, T., Arakawa, M., Sakimura, K., and Mishina, M. (1992). Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70-74.
Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984). Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12, 7035-7056.
Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W. (1988). Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci U S A 85, 9836-9840.
Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529-540.
Monyer, H., Seeburg, P. H., and Wisden, W. (1991). Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6, 799-810.
Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P. H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217-1221.
Osten, P., Khatri, L., Perez, J. L., Kohr, G., Giese, G., Daly, C., Schulz, T. W., Wensky, A., Lee, L. M., and Ziff, E. B. (2000). Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27, 313-325.
Parker, R. M., and Barnes, N. M. (1999). mRNA: detection by in Situ and northern hybridization. Methods Mol Biol 106, 247-283.
Pellegrini-Giampietro, D. E., Bennett, M. V., and Zukin, R. S. (1991). Differential expression of three glutamate receptor genes in developing rat brain: an in situ hybridization study. Proc Natl Acad Sci U S A 88, 4157-4161.
Schiffer, H. H., Swanson, G. T., and Heinemann, S. F. (1997). Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141-1146.
Shatz, C. J. (1990). Impulse activity and the patterning of connections during CNS development. Neuron 5, 745-756.
Sheng, M., and Pak, D. T. (2000). Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol 62, 755-778.
Soeth, E., Roder, C., Juhl, H., Kruger, U., Kremer, B., and Kalthoff, H. (1996). The detection of disseminated tumor cells in bone marrow from colorectal-cancer patients by a cytokeratin-20-specific nested reverse-transcriptase-polymerase-chain reaction is related to the stage of disease. Int J Cancer 69, 278-282.
Sommer, B., Burnashev, N., Verdoorn, T. A., Keinanen, K., Sakmann, B., and Seeburg, P. H. (1992). A glutamate receptor channel with high affinity for domoate and kainate. Embo J 11, 1651-1656.
Sommer, B., Kohler, M., Sprengel, R., and Seeburg, P. H. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11-19.
Standaert, D. G., Testa, C. M., Young, A. B., and Penney, J. B., Jr. (1994). Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol 343, 1-16.
Sucher, N. J., Akbarian, S., Chi, C. L., Leclerc, C. L., Awobuluyi, M., Deitcher, D. L., Wu, M. K., Yuan, J. P., Jones, E. G., and Lipton, S. A. (1995). Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15, 6509-6520.
Sugihara, H., Moriyoshi, K., Ishii, T., Masu, M., and Nakanishi, S. (1992). Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185, 826-832.
Swift, G. H., Peyton, M. J., and MacDonald, R. J. (2000). Assessment of RNA quality by semi-quantitative RT-PCR of multiple regions of a long ubiquitous mRNA. Biotechniques 28, 524, 526, 528, 530-521.
Wasserman, L., Dreilinger, A., Easter, D., and Wallace, A. (1999). A seminested RT-PCR assay for HER2/neu: initial validation of a new method for the detection of disseminated breast cancer cells. Mol Diagn 4, 21-28.
Weis, J. H., Tan, S. S., Martin, B. K., and Wittwer, C. T. (1992). Detection of rare mRNAs via quantitative RT-PCR. Trends Genet 8, 263-264.
Wisden, W., and Seeburg, P. H. (1993). A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 13, 3582-3598.
Zukin, R. S., and Bennett, M. V. (1995). Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci 18, 306-313.