研究生: |
蕭閔分 Hsiao, Min-Fen |
---|---|
論文名稱: |
基於四波混頻波之訊號調變透明化全光式波長轉換系統 Modulation Format Transparent All Optical Wavelength Conversion based on Four Wave Mixing |
指導教授: |
馮開明
Feng, Kai-Ming |
口試委員: |
黃元豪
邱奕鵬 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 四波混頻 、波長轉換 、正交分頻多工 |
外文關鍵詞: | Four Wave Mixing, Wavelength Conversion, Orthogonal Frequency Division Multiplexing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於現今網際網路的快速發展,對網路高資料傳輸率的要求亦趨增加。然而目前交換機部分仍仰賴電訊號的處理技術,這限制了網路的透明性 (Transparency)。此外,電交換機處理速度較慢,在光纖通訊網路中形成一大瓶頸。而全光式交換 (all-optical switching)技術可突破電訊號技術限制的瓶頸。全光式封包交換技術最核心的關鍵在於對於訊號的波長轉換 (wavelength conversion)機制。
然而全光式轉換技術大多只能將振幅資訊做轉換,例如XPM、XGM波長轉換技術。而FWM是目前唯一能同時將振幅資訊與相位資訊做轉換的波長轉換技術,因此本篇論文針對傳送不同modulation format與data rate的條件下,利用四波混頻建立全光式封包交換技術的波長轉換機制進行探討。首先介紹各種不同的波長轉換技術,並藉由理論得出FWM適用於不同modulation format之波長轉換系統。接著模擬在傳送QPSK single carrier的條件下,藉由討論改變pump power與高非線性光纖之有效長度找出系統最佳化參數,我們會發現增加pump power與有效長度時,可增加pump與signal之間的FWM非線性效應,因此提高converted signal power,增加performance。但converted signal power太大時,則converted signal 與pump之間作用的FWM會影響原始signal,造成performance下降。因此必須在converted signal power與signal power之間做trade-off。接下來以4-QAM OFDM作為波長轉換之訊號,藉由模擬結果,我們發現DD-OFDM之CSPR為0 dB時,performance最好。Laser linewidth為1 MHz與100 kHz之performance相同,亦即不需特別設計DD-OFDM參數或是使用laser linewidth較窄的laser即可完成波長轉換系統。因此本篇論文中,成功做到訊號透明化之四波混頻全光式波長轉換技術。
[1] http://www.telegeography.com/
[2] Hui-Chuan. Lin, “Numerical Study of Self-Coherent Detection in an Optical OFDM System”, Institute of Communication engineering in NTHU, master thesis, 2010
[3] R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission”, Bell Syst. Tech. J., vol. 45, pp. 1775–1796, Dec. 1966.
[4] R. W. Chang and R. Gibby, “A theoretical study of performance of an orthogonal multiplexing data transmission scheme”, IEEE Trans. on Commun. Technol., vol. COM-16, pp. 529–540, August 1968.
[5] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform”, IEEE Trans. Comm. Tech., vol. COM-19, pp. 628-634 , Oct 1971,
[6] A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems”, Opt. Express, 14, pp. 2079-2084, 2006
[7] A. J. Lowery and J. Armstrong, “Adapation of Orthogonal Frequency Division Multiplexing to Compensate Impairments in Optical Transmission Systems”, ECOC, vol. 2, pp. 121-152, 2007
[8] A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of Optical OFDM in Ultralong-Haul WDM Lightwave Systems”, Journal of Lightwave Technology, vol 25, NO. 1, pp. 131-138, 2007
[9] William Shieh, “OFDM for Optical Communication” , Chapter 3, ACADEMIC PRESS (2010)
[10] Chun-Yun. Ong, “Optical OFDM experimental system”, Institute of Communication engineering in NTHU, master thesis, 2010
[11] S. Yao, B. Mukherjee, and S. Dixit, “Advance in photonic packet switching:An overview”, IEEE Commun. Mag, pp. 84-94, 2000.
[12] Dong-Hua. Hsueh, “All-optical FIFO switch”, Institute of Photonics Technologies in NTHU, master thesis, 2008
[13] B. E. A. Saleh, M. C. Teich, “Fundamentals of Photonic”, 2/e, Chapter 21, WILEY ( 2007)
[14] http://ofscatalog.specialtyphotonics.com/
[15] R. Elschner, T. Richter, L. Molle, K. Petermann, C. Schubert, "Single-Pump FWM-Wavelength Conversion in HNLF using Coherent Receiver-based Electronic Compensation", ECOC, p. 17-19, Turin 2010
[16] Govind P. agrawal, “Lightwave technology”, Chapter 4, WILEY (2005)
[17] A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems”, Opt. Express 16, 860-865 (2008)