簡易檢索 / 詳目顯示

研究生: 籃棣雍
Lan,Ti Yung
論文名稱: 二硫化鉬之合成
Synthesis of MoS2 with Chemical Vapor Deposition.
指導教授: 吳振名
Jenn-Ming Wu
李奕賢
Yi-Hsien Lee
口試委員: 林伯彥
吳振名
李奕賢
楊智超
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
中文關鍵詞: 二硫化鉬光感測
外文關鍵詞: MoS2, photodetection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩部分,第一部分以化學氣相沉積法(Chemical Vapor Deposition)合成大面積的單層二硫化鉬,藉由控制製程參數獲得高品質單層二硫化鉬。第二部分製備二硫化鉬之場效電晶體(FET),藉由電性量測與光感測(Photodetection)量測,探討單層二硫化鉬之光電特性及光感測器應用,二硫化鉬之場效電晶體元件具有優異之電性:開關電流比(On off current ratio)可達104至105,載子遷移率約為12.5cm2/Vs。單層二硫化鉬具有優異的光感測特性,其場效電晶體元件照光後,光電流於7.6秒內能增加70%飽和光電流,25秒內能降低70%飽和光電流,經由計算可以得知在汲極電壓為1V且閘極電壓為10.5V下,光響應率高達392.5A/W。另外從實驗結果可以得知在大氣下的量測較能使得光電流有弛豫(Relaxation)的現象,可能的原因推測是空氣中有一些吸附物會吸附在二硫化鉬的表面,這些吸附物傾向於捕獲二硫化鉬內部的本質電子,造成表面類似p型摻雜的結果,也就是如D+e-→D-的反應式,而在照光後激發電子電洞對,其中的電洞與帶負電的吸附物進行復合(Recombination),也就是這些吸附物在照光後有類似光脫附(Photo-desorption)的效果,寫成反應式即D-+h+→D,因此在大氣中關閉光源時,由於這些吸附物傾向於捕獲電子,產生類似協助光電流進行弛豫(Relaxation)的效果,而在照光時,這些吸附物與電洞複合進而脫附離開材料表面,反之在真空中,因為缺乏這些吸附物,在關閉光源時無法有效將光電流弛豫,所以在關閉光源時汲極電流下降的較在大氣中慢,而在打開光源時,也因為不需要提供電子電洞對復合這些帶電的吸附物,因此可以得到較高的光電流值。


    In this research, we used chemical vapor deposition to synthesize large area monolayer MoS2, then we fabricated MoS2 FET and measured its electrical properties and photodetection.
    MoS2 has excellent electrical properties: our device could reach 12.5 cm2/Vs mobility, 104 to 105 on/off current ratio.
    In photodetection of MoS2 FET, our device took 7.6 second to reach 70% of saturation photocurrent, 25 second to decay. And under 1V drain voltage, 10.5V gate voltage, the responsivity of our device was 392.55A/W.

    第一章 研究動機 1 第二章 文獻回顧 2 2-1 晶體結構 2 2-2 電子與能帶結構 2 2-3 光學特性 3 2-4 過渡金屬硫族化合物之合成 4 2-5 二硫化鉬的電性質 6 2-6 二硫化鉬的光電性質 8 第三章 實驗方法 16 3-1 實驗大綱 16 3-2 實驗準備與實驗架設 16 3-2-1 基板前處理 16 3-2-2 實驗架設與步驟 17 3-3 實驗量測及儀器 18 3-3-1 晶體結構分析 18 3-3-2 光學顯微鏡照片 18 3-3-3 表面形貌與厚度觀察 18 3-3-4 光學性質量測 19 3-3-5 表面成分分析 19 3-3-6 光感測元件電性量測 19 3-4 場效電晶體製作 21 第四章 化學氣相沉積法合成二硫化鉬 24 4-1 前言 24 4-2 不同硫量與硫坩鍋位置對成長的影響 24 4-3 材料品質與層數的鑑定 26 第五章 光電量測與光感測特性 33 5-1 二硫化鉬場效電晶體之電性量測 33 5-2 二硫化鉬場效電晶體光感測量測 36 5-2-1 不同光源比較 36 5-2-2 不同閘極與源極偏壓對形成光電流比較 37 5-2-3 真空與大氣下量測比較 38 5-2-4 縮小電極對光感測元件的影響 41 第六章 參考文獻 57

    [1] R Ganatra, Q Zhang. Few-Layer MoS2: A Promising Layered Semiconductor .ACS Nano. 2014, 8 (5), pp 4074–4099

    [2] Mak K F, Lee C, Hone J, Shan J and Heinz T F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010,105

    [3] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G and Wang F. Emerging Photoluminescence in Monolayer MoS2 .Nano Letters. 2010, 10, 1271-5

    [4] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M. Photoluminescence from Chemically Exfoliated MoS2. Nano Letter. 2011, 11, 5111-6

    [5] Coehoorn R, Haas C and Degroot R. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. 1987, 35, 6203-6

    [6] Molina-Sanchez A and Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B. 2011, 84, 155413

    [7] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.Acs Nano.2010, 4 ,2695-700

    [8] Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J and Steele G A. Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor. Nano Letters. 2012, 12, 3187-92

    [9] Bertolazzi S, Brivio J and Kis A. Stretching and Breaking of Ultrathin MoS2. ACS Nano, 2011, 5, 9703-9

    [10] Tsai H L, Heising J, Schindler J L, Kannewurf C R and Kanatzidis M G. Exfoliated restacked phase of WS2 .Chemistry of Materi.1997, 9, 879–882

    [11] Wu S F, Huang C M, Aivazian G, Ross J S, Cobden D H and Xu X D. Vapor-Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano.2013, 72768-72

    [12] Yu Y F, Li C, Liu Y, Su L Q, Zhang Y and Cao L Y. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Sci Rep.2013, 3, 6

    [13] Balendhran S, Ou J Z, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S and Kalantar-zadeh K. Atomically thin layers of MoS2 via a two-step thermal evaporation-exfoliation method. Nanoscale. 2012, 4,461-6

    [14] Lee Y-H, Zhang X-Q, Zhang W, Chang M-T, Lin C-T, Chang K-D, Yu Y-C, Wang J T-W, ChangC-S, Li L-J and Lin T-W. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320-5

    [15] Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS Nano. 2011, 5, 9703–9709.

    [16] Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu,T. Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics. Nano Lett. 2012, 12, 4013–4017.

    [17] Novoselov, K.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451–10453.

    [18] Radisavljevic, B.; Kis, A. Reply to “Measurement of Mobility in Dual-Gated MoS2 Transistors”. Nat. Nanotechnol. 2013, 8, 147–148

    [19] Radisavljevic, B.; Kis, A. Mobility Engineering and Metal-Insulator Transition in Monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    [20] Fuhrer, M. S.; Hone, J. Measurement of Mobility in Dual-GatedMoS2 Transistors. Nat. Nanotechnol. 2013, 8, 146–147.

    [21] Jariwala, D.; Sangwan, V. K.; Late, D. J.; Johns, J. E.; Dravid,V. P.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Band-like Transport in High Mobility Unencapsulated Single-Layer MoS2 Transistors. Appl. Phys. Lett.2013, 102, 173107.

    [22] Sangwan, V. K.; Arnold, H. N.; Jariwala, D.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors. Nano Lett. 2013, 13, 4351–4355.

    [23] Zhang, W.; Huang, J.-K.; Chen, C.-H.; Chang, Y.-H.; Cheng, Y.-J.; Li, L.-J.High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Adv. Mater. 2013, 25, 3456–3461.

    [24] Baugher, B.; Churchill, H. O.; Yang, Y.; Jarillo-Herrero, P.Intrinsic Electronic Transport Properties of High Quality Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 4212–4216.

    [25] Kaasbjerg, K.; Thygesen, K. S.; Jauho, A.-P. Acoustic Phonon-Limited Mobility in Two-Dimensional Semiconductors: Deformation Potential and Piezoelectric Scattering in Monolayer MoS2 from First Principles. Phys. Rev. B, 2013, 87, 235312.

    [26] Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors. ACS Nano. 2011, 5, 7707–7712.

    [27] Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S.; Steele, G. A.; Castellanos-Gomez, A. Large and Tunable Photothermoelectric Effect in Single-Layer MoS2. Nano Lett. 2013, 13, 358–363.

    [28] Das, S.; Chen, H.-Y.; Penumatcha, A. V.; Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Lett. 2012, 13, 100–105.

    [29] Popov, I.; Seifert, G.; Tománek, D. Designing Electrical Contacts to MoS2 Monolayers: A Computational Study. Phys. Rev. Lett.2012, 108, 156802.

    [30] Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors. Nano Lett. 2013, 13, 1983–1990.

    [31] Liu, D.; Guo, Y.; Fang, L.; Robertson, J. Sulfur Vacancies in Monolayer MoS2 and Its Electrical Contacts. Appl. Phys. Lett.2013, 103, 183113.

    [32] Liu, H.; Si, M.; Deng, Y.; Neal, A. T.; Du, Y.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: An Insight into Current Flow across Schottky Barriers. ACS Nano. 2014, 8, 1031–1038.

    [33] Walia, S.; Balendhran, S.; Wang, Y.; Ab Kadir, R.; Zoolfakar,A. S.; Atkin, P.; Ou, J. Z.; Sriram, S.; Kalantar-zadeh, K.; Bhaskaran, M. Characterization of Metal Contacts for Two-Dimensional MoS2 Nanoflakes. Appl. Phys. Lett.2013, 103, 232105.

    [34] Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden,D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K.; et al. Metal Contacts on Physical Vapor Deposited Monolayer MoS2.ACS Nano. 2013, 7, 11350–11357.

    [35] Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Adv. Mater. 2012, 24, 5832–5836.

    [36] Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang,Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano,2012, 6, 74–80.

    [37] Lee, H. S.; Min, S.-W.; Chang, Y.-G.; Park, M. K.; Nam, T.; Kim,
    H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Lett. 2012, 12, 3695–3700.

    [38]Allen, J. E.; Hemesath, E. R.; Lauhon, L. J. Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel. Nano Lett. 2009, 9, 1903–1908.

    [39] Gu, Y.; Kwak, E. S.; Lensch, J. L.; Allen, J. E.; Odom, T. W.;Lauhon, L. J. Near-Field Scanning Photocurrent Microscopy of a Nanowire Photodetector. Appl. Phys. Lett.2005, 87, 043111.

    [40] Wu, C.-C.; Jariwala, D.; Sangwan, V. K.; Marks, T. J.; Hersam,M. C.; Lauhon, L. J. Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. J. Phys. Chem. Lett. 2013, 4, 2508–2513.

    [41] Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.;Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nano technol. 2013, 8, 497–501

    [42] Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.;Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H.Hybrid Graphene Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nano technol. 2012, 7, 363–368.

    [43] Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; Wiley: New York, 2007.

    [44] Tsai, D.-S.; Lien, D.-H.; Tsai, M.-L.; Su, S.-H.; Chen, K.-M.; Ke,J., Jr.; Yu, Y.-C.; Li, L.-J.; He, H., Jr. Tri-layered MoS2 Metal Semiconductor Metal Photodetectors: Photo gain and Radiation Resistance. IEEE J. Sel. Top.Quantum Electron, 2014, 20, 3800206.

    [45] Tsai, D.-S.; Liu, K.-K.; Lien, D.-H.; Tsai, M.-L.; Kang, C.-F.; Lin,C.-A.; Li, L.-J.; He, J.-H. Few Layer MoS2 with Broadband High Photo gain and Fast Optical Switching for Use in Harsh Environments. ACS Nano. 2013, 7, 3905–3911.

    [46] Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X.Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. Nat. Nano technol. 2013, 8, 952–958.

    [47] Ye, Y.; Ye, Z.; Gharghi, M.; Zhu, H.; Zhao, M.; Yin, X.; Zhang,X. Exciton-Related Electroluminescence from Monolayer MoS2. arXiv:1305.4235 2013.

    [48] Esmaeili-Rad, M. R.; Salahuddin, S. High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector. Sci. Rep. 2013, 3, 2345

    [49] Jariwala, D.; Sangwan, V. K.; Wu, C.-C.; Prabhumirashi, P. L.;Geier, M. L.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-Tunable Carbon Nanotube MoS2 Heterojunction p-n Diode. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 18076–18080.

    [50] Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 2013, 13, 3664–3670.

    [51] Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.;Mandrus, D.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; et al. Electrically Tunable Excitonic Light Emitting Diodes Based on Monolayer WSe2 p-n Junctions.arXiv:1312.1435 2013.

    [52] Amani, M.; Chin, M. L.; Birdwell, A. G.; O'Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M.Electrical Performance of Monolayer MoS2 Field-Effect Transistors Prepared by Chemical Vapor Deposition. Appl. Phys. Lett.2013, 102, 193107.

    [53] van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach,T. C.; You, Y.; Lee, G.-H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulphide. Nat. Mater. 2013, 12, 554–561.

    [54] Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol.2011, 6, 147–150.

    [55] Liu, H.; Neal, A. T.; Ye, P. D. Channel Length Scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

    [56] Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.;Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices. Nat. Nanotechnol. 2013, 8,826–830.

    [57] Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-Limited Mobility in n-Type Single-Layer MoS2 from FirstPrinciples. Phys. Rev. B 2012, 85, 115317.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE