研究生: |
曾郁雯 Tseng, Yu-Wen |
---|---|
論文名稱: |
二硫化鎢與二硫化鉬異質結構的合成與量測 Synthesis and Characterization of Tungsten disulfide and Molybdenum disulfide Heterostructures |
指導教授: |
李奕賢
Lee, Yi-Hsien |
口試委員: |
張哲豪
吳錦貞 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 二維材料 、異質結構 、二硫化鎢 |
外文關鍵詞: | 2-d material, Tungsten disulfide, lateral heterostructure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,二維過渡金屬硫屬化物因其新穎的物理特性與化學性質而備受重視。本論文中,主要使用化學氣相沉積法結合晶種以促進二硫化鎢薄膜於二氧化矽基板和藍寶石基板上的合成反應。並藉由晶種濃度與還原氣氛氫氣的流量控制來調整薄膜的合成面積及二硫化鎢單晶的結晶形狀。
過渡金屬硫屬化物原子級異質結構具有特殊的光電特性,可應用於下一世代的光電元件材料。本論文藉由合成二維材料的基礎,提出使用一階段製程以及二階段製程法的方式合成出單層二硫化鎢與二硫化鉬的異質結構。此類異質結構的特性會受到相位、材料結構對稱性及材料介面處影響,在異質結構的原子影像中可觀察到,相異兩材料的介面沿著材料Zia-Zag結晶方向進行磊晶成長。同時,也可藉由控制兩種材料混合比例達到調整其能隙大小。
In recent years, there has been an increasing interest in Two-dimensional semiconducting transition metal dichalcogenides (TMDs) because of their novel physical and chemical properties.
In this work, we demonstrated the synthesis of high quality single crystal WS2 and large-area films on sapphire and SiO2 substrate using ambient chemical vapor deposition(CVD) with aromatic molecules as seeding promoters. The coverage and domain size of WS2 were controlled by the concentration of seeding promotor and adjusting the flow rate of H2 carrier gas.
Atomically thin heterostructures of TMDs with novel electric properties and optical characteristic are the key material of next generation flexible nanoelectronics. Here, based on the previous work of the synthesis of TMDs, we demonstrate one step and two step synthesis of lateral heterostructures of monolayer TMDs. The diverse performances of these heterostructure are significantly determined by phases, symmetry and interface quality. In atomic-resolution images, a uniform lateral growth along the MX2 is observed and the interface of lateral heterostructures picks the zigzag direction of the lattice. Meanwhile, we can control the bandgap energy by adjusting the ratio of the composition.
Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
2. Podzorov, V., et al., High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 2004. 84(17): p. 3301-3303.
3. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
4. Sie, E.J., et al., Valley-selective optical Stark effect in monolayer WS2. Nat Mater, 2015. 14(3): p. 290-294.
5. Zhao, W., et al., Origin of Indirect Optical Transitions in Few-Layer MoS2, WS2, and WSe2. Nano Letters, 2013. 13(11): p. 5627-5634.
6. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014. 13(12): p. 1128-1134.
7. Mak, K.F. and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016. 10(4): p. 216-226.
8. Gutiérrez, H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013. 13(8): p. 3447-3454.
9. Mak, K.F., et al., Atomically Thin MoS2 : A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
10. Xiao, D., et al., Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Physical Review Letters, 2012. 108(19): p. 196802.
11. Cao, T., et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. 2012. 3: p. 887.
12. Kim, M.S., et al., Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers. ACS Nano, 2016. 10(2): p. 2399-2405.
13. Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nat Mater, 2013. 12(3): p. 207-211.
14. Nicolosi, V., et al., Liquid Exfoliation of Layered Materials. Science, 2013. 340(6139).
15. Zhang, Y., et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013. 7(10): p. 8963-8971.
16. Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nat Nano, 2010. 5(10): p. 722-726.
17. Cheng, R., et al., Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes. Nano Letters, 2014. 14(10): p. 5590-5597.
18. Gong, Y., et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014. 13(12): p. 1135-1142.
19. Zhang, X.-Q., et al., Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015. 15(1): p. 410-415.
20. Hsu, W.-T., et al., Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers. ACS Nano, 2014. 8(3): p. 2951-2958.
21. Yang, W., et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater, 2013. 12(9): p. 792-797.
22. Shi, Y., et al., van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates. Nano Letters, 2012. 12(6): p. 2784-2791.
23. Chen, K., et al., Electronic Properties of MoS2–WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. ACS Nano, 2015. 9(10): p. 9868-9876.
24. Duan, X., et al., Synthesis of WS2xSe2–2x Alloy Nanosheets with Composition-Tunable Electronic Properties. Nano Letters, 2016. 16(1): p. 264-269.
25. Kobayashi, Y., et al., Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-x W x S2 alloys. Nano Research, 2015. 8(10): p. 3261-3271.
26. Liu, X., et al., Monolayer WxMo1−xS2 Grown by Atmospheric Pressure Chemical Vapor Deposition: Bandgap Engineering and Field Effect Transistors. Advanced Functional Materials, 2017. 27(13): p. 1606469-n/a.
27. Zhang, X., et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015. 44(9): p. 2757-2785.
28. Yin, X., et al., Edge Nonlinear Optics on a MoS<sub>2</sub> Atomic Monolayer. Science, 2014. 344(6183): p. 488-490.
29. Cao, D., et al., Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS2. The Journal of Physical Chemistry C, 2015. 119(8): p. 4294-4301.
30. Wang, S., et al., Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chemistry of Materials, 2014. 26(22): p. 6371-6379.
31. Yang, S.Y., et al., Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Research, 2017. 10(1): p. 255-262.
32. Ling, X., et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, 2014. 14(2): p. 464-472.
33. Chen, L., et al., Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. ACS Nano, 2015. 9(8): p. 8368-8375.
34. Salvatore, G.A., et al., Fabrication and Transfer of Flexible Few-Layers MoS2 Thin Film Transistors to Any Arbitrary Substrate. ACS Nano, 2013. 7(10): p. 8809-8815.
35. Peimyoo, N., et al., Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles. ACS Nano, 2013. 7(12): p. 10985-10994.
36. Zhang, W., et al., High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Advanced Materials, 2013. 25(25): p. 3456-3461.
37. Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015. 5(92): p. 75500-75518.