簡易檢索 / 詳目顯示

研究生: 周祐陞
Zhou, You-Sheng
論文名稱: 應用晶格波茲曼法及局部加密網格於圖型顯示卡叢集計算紊流平板流
Lattice Boltzmann simulations of turbulent channel flows with local grid refinement on multi-GPU cluster
指導教授: 林昭安
Lin, Chao-An
口試委員: 林洸銓
Lin, Kuang-Chuan
吳毓庭
Wu, Yu-Ting
王謹誠
Wang, Jin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 48
中文關鍵詞: 晶格波茲曼法
外文關鍵詞: lattice Boltzmann method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以晶格波茲曼法結合局部網格加密模擬紊流平板流。局部網格加密以
    動黏滯係數與剪應力在不同系統的網格間應該連續為原則並探討不同網格大小
    間的外力項轉換。為了加速模擬,使用訊息傳遞介面結合圖形顯示卡叢集進行
    平行運算,可大幅節省時間。本文以D3Q19 多鬆弛模型與局部網格加密分別模
    擬Reτ = 180, 395, 和640 的平板流來驗證本文所提出的方法。在主流場平均速
    度、紊流強度、雷諾應力與紊流能量收支所得到的模擬結果與均與benchmark
    有相匹配的結果。本文最後針對多張圖型顯示卡與平行效率進行討論。


    In this study, the local grid refinement method is applied to tackle wall-bounded
    channel flows. The local grid refinement method is based on the continuity of
    kinematic viscosity and shear stress. The rescaling of the external force is also
    considered between different mesh systems. The D3Q19 multi-relaxation-time LBM
    with the local grid refinement model that was implemented on the graphics processing
    units is found to be suitable for massive computation. To validate the method, the
    turbulent channel flows are simulated with the friction Reynolds numbers set as
    Re = 180; 395, and 640, respectively. The streamwise mean velocity, turbulent
    intensity, Reynolds stress, and turbulent kinematic budget are revealed. The results
    show strong agreement between the present model and the benchmark solutions. The
    parallel performance for the strong scaling test is also discussed.

    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Grid refinement for lattice Boltzmann method . . . . . . . . . 3 1.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Turbulent channel flow . . . . . . . . . . . . . . . . . . . . . . 4 1.2.4 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Motivation and objective . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Methodology 7 2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The low-Mach-number approximation . . . . . . . . . . . . . . . . . . 9 2.3 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . 10 2.3.1 Discretization of time . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 Discretization of phase space . . . . . . . . . . . . . . . . . . 11 2.4 The Chapman-Enskog expansion . . . . . . . . . . . . . . . . . . . . 12 3 Numerical algorithm 14 3.1 Multiple-relaxation-time lattice Boltzmann model . . . . . . . . . . . 14 3.2 Local grid refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Boundary condition implementations . . . . . . . . . . . . . . . . . . 18 3.4 The external forcing term . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 One dimensional decomposition . . . . . . . . . . . . . . . . . . . . . 19 4 Numerical results and discussion 26 4.1 Turbulent channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Parallel performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Conclusions 41

    [1] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-
    Stokes equation,” Phys. Rev. Lett. 56, 1505, (1986).
    [2] S. Wolfram, “Cellular automata fluids 1: Basic theory,” J. Stat. Phys. 45, 471,
    (1986).
    [3] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes
    in gases. I. small amplitude processes in charged and neutral one-component
    systems,” Physics Reviews E 94, 511, (1954).
    [4] Kannan N. Premnath, Martin J. Pattison and Sanjoy Banerjee,“Generalized
    lattice Boltzmann equation with forcing term for computation of wall-bounded
    turbulent flows” Physical Review E 79, 026703, 2009
    [5] K. Suga, Y. Kuwata, K. Takashima, R. Chikasue,“A D3Q27 multiplerelaxation-
    time lattice Boltzmann method for turbulent flows” Computers and
    Mathematics with Applications 69, (2015) 518–529.
    [6] H. Yu, S. S. Girimaji and L. S. Luo, “DNS and LES of decaying isotropic
    turbulence with and without frame rotation using lattice Boltzmann method,”
    Journal of Computational Physics 209, 599 (2005).
    [7] G. R. McNamara, and G. Zanetti, “Use of the Boltzmann equation to simulate
    lattice-gas automata,” Phys. Rev. Lett. 61, 2332, (1988).
    [8] F. J. Higuera, and J. Jiménez, “Boltzmann approach to lattice gas simulations,”
    Europhys. Lett. 9, 663, (1989).
    [9] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann
    model for simulation of magnethydrodynamics,” Phys. Rev. Lett. 67, 3776,
    (1991).
    [10] H. Chen, S. Chen, and W. H. Matthaeus, “Recovery of the Navier-Stokes
    equations using a lattice-gas Boltzmann method,” Phys. Rev. A. 45, 5339,
    (1992).
    [11] Y. H. Qian, D. d’Humières, and P. Lallemand, “Lattice BGK models for Navier-
    Stokes equation,” Europhys. Lett. 17, 479, (1992).
    [12] X. He, and L. S. Luo, “Theory of the lattice Boltzmann method: From the
    Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56,
    6811, (1997).
    [13] X. He, and L. S. Luo, “A priori derivation of the lattice Boltzmann equation,”
    Phys. Rev. E 55, 6333, (1997).
    [14] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes
    in gases. I. small amplitude processes in charged and neutral one-component
    systems”, Physics Reviews E 94, 511, (1954).
    [15] K. Kono, T. Ishizuka, H. Tsuda, and A. Kurosawa, “Application of lattice
    Boltzmann model to multiphase flows with phase transition,” Comput. Phys.
    Commun. 129, 110, (2000).
    [16] S. Hou, X. Shan, Q. Zou, G. D. Doolen, and W. E. Soll, “Evaluation of two
    lattice Boltzmann models for multiphase flows,” J. Comput. Phys. 138, 695,
    (1997).
    [17] X. He, S. Chen, and R. Zhang, “A lattice Boltzmann scheme for
    incompressible multiphase flow and its application in simulation of Rayleigh-
    Taylor instability,” J. Comput. Phys. 152, 642, (1999).
    [18] C. H. Shih, C. L. Wu, L. C. Chang, and C. A. Lin, “Lattice Boltzmann
    simulations of incompressible liguid-gas system on partial wetting surface,”
    Phil. Trans. R. Soc. A 369, 2510, (2011).
    [19] M. Krafczyk, M. Schulz, and E. Rank, “Lattice-gas simulations of two-phase
    flow in porous media,” Commun. Numer. Meth. Engng 14, 709, (1998).
    [20] J. Bernsdorf, G. Brenner, and F. Durst, “Numerical analysis of the pressure
    drop in porous media flow with lattice Boltzmann (BGK) automata,” Comput.
    Phys. Commun. 129, 247, (2000).
    [21] D. M. Freed, “Lattice-Boltzmann method for macroscopic porous media
    modeling,” Int. J. Mod. Phys. C 9, 1491, (1998).
    [22] Y. Hashimoto, and H. Ohashi, “Droplet dynamics using the lattice-gas
    method,” Int. J. Mod. Phys. 8, 977, (1997).
    [23] H. Xi, and C. Duncan, “Lattice Boltzmann simulations of three-dimensional
    single droplet deformation and breakup under simple shear flow,” Phys. Rev.
    E 59, 3022, (1999).
    [24] S. Hou, “Lattice Boltzmann Method for Incompressible, Viscous Flow“, Ph.D.
    Thesis, Department of Mechanical Engineering, Kansas State University,
    (1995).
    [25] R. A. Brownlee, A.N Gorban, J.Levesley,”Stabilisation of the lattice-
    Boltzmann method using the Ehrenfests’ coarse-graining”, (2008)
    [26] M. Spasov, D. Rempfer, and P. Mokhasi,“Simulation of a turbulent channel
    flow with entropic Lattice Boltzmann method“, International Journal For
    Numerical Methods In Fluids60, 1241, (2008)
    [27] F. Tosi, S. Ubertini, S. Succi, and I. V. Karlin,“Optimization strategies for the
    Entropic lattice Boltzmann method“, Journal of Scientific Computing 30, No.
    3, (2006)
    [28] D. d’Humières, “Generalized lattice Boltzmann equation“, In Rarefied Gas
    Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics,
    159, Shizgal BD, Weaver DP (eds).AIAA: Washington, DC, 45, (1992).
    [29] P. Lallemand, and L. S. Luo, “Theory of the lattice Boltzmann method:
    dispersion, dissipation, isotropy, Galilean invariance, and stability,” Phys. Rev.
    E 61, 6546, (2000).
    [30] O. Filippova and D. Hänel, “Grid refinement for lattice-BGK models” Journal
    of Computational Physics 147, 219, (1998)
    [31] A. Dupuis and B. Chopard, “Theory and applications of an alternative lattice
    Boltzmann grid refinement algorithm” Physical Review E 67, 066707, (2003).
    [32] D. Yu, R. Mei and W. Shyy, “A multi-block lattice Boltzmann method for
    viscous fluid flows,” Int. J. Numer. Meth. Fluids 39, 99, (2002).
    [33] K. J. Tsai, “Simulation of channel flow with lattice Boltzmann method and
    local grid refinement on multi-GPU cluster”, Master’s thesis, National Tsing
    Hua University, (2017).
    [34] X. He, Q. Zou, L. S. Luo and M. Dembo, “Analytic solutions of simple flows
    and analysis of nonslip boundary conditions for the lattice Boltzmann BGK
    model.”, J. Stat. Phys., textbf87, 115, (1997).
    [35] I.C. Kim “Second Order Bounce Back Boundary Condition for the lattice
    Boltzmann Fluid Simulation,” KSME. 14, 84, (2000).
    [36] P. A. Skordos, “Initial and boundary conditions for the lattice Boltzmann
    method,” Phys. Rev. E 48, 4823, (1993).
    [37] D. R. Noble, S. Chen, J. G. Georgiadis and R. O. Buckius, “A consistent
    hydrodynamic boundary condition for the lattice Boltzmann method,” Phys.
    Fluid 7, 2928, (1995).
    [38] T. Inamuro, M. Yoshino, and F. Ogino, “A non-slip boundary condition for
    lattice Boltzmann simulations,” Phys. Fluids 7, 2928, (1995).
    [39] S. Chen, D. Martinez, and R. Mei, “On boundary conditions in lattice
    Boltzmann methods,” Phys. Fluids 8, 2527, (1996).
    [40] Q. Zou, and X. He, “On pressure and velocity boundary conditions for the
    lattice Boltzmann BGK model,” Phys. Fluids 9, 1591, (1997).
    [41] C. F. Ho, C. Chang, K. H. Lin, and C. A. Lin, “Consistent boundary conditions
    for 2D and 3D lattice Boltzmann simulations,” CMES 44, 137, (2009).
    [42] J. Kim, P. Moin, R. Moser, “Turbulence statistics in fully developed channel
    flow at low Reynolds number”, J. Fluid Mech. 177, 133–166, (1987) .
    [43] R. Moser, J. Kim, N. N. Mansour, “Direct numerical simulation of turbulent
    channel flow up to Re = 590”, Phys. Fluids, textbf11, 943-945, (1999).
    [44] H. Abe, H. Kawamura, “Surface heat-flux fluctuations in a turbulent channel
    flow up to Re =1020 with Pr=0.025 and 0.71”, International Journal of Heat
    and Fluid Flow, textbf25, 404-419, (2004).
    [45] I. H. Lee, “Simulation of thermal turbulent channel flow with single-relaxationtime
    thermal lattice Boltzmann method on multi-GPU cluster”, Master’s
    thesis, National Tsing Hua University, (2016).
    [46] J. Tölke, “Implementation of a lattice Boltzmann kernel using the compute
    unified device architecture developed by nVIDIA,” Comput. Visual Sci. 13,
    29, (2008).
    [47] J. Tölke, and M. Krafczyk, “TeraFLOP computing on a desktop PC with GPUs
    for 3D CFD,” Int. J. Comput. Fluid D. 22, 443, (2008).
    [48] H. W. Chang, P. Y. Hong, L. S. Lin and C. A. Lin,“Simulations of flow
    instability in three dimensional deep cavities with multi relaxation time lattice
    Boltzmann method on graphic processing units,” Comput. Fluids., 88, 866,
    (2013).
    [49] L. S. Lin, H. W. Chang, C. A. Lin, “Multi relaxation time lattice Boltzmann
    simulations of transition in deep 2D lid driven cavity using GPU,” Comput.
    Fluids., 80, 381, (2013).
    [50] P. Y. Hong, L. M. Huang, L. S. Lin and C. A. Lin, “Scalable multi-relaxationtime
    lattice Boltzmann simulations on multi-GPU cluster,” Comput. Fluids.
    110, 1-8, (2015).
    [51] P. Y. Hong, L. M. Huang, C. Y. Chang and C. A. Lin, “Lattice Boltzmann
    Simulations of Cavity Flows on Graphic Processing Unit with Memory
    Management.” Journal of Mechanics, Access 33, 6, 863 (2017).
    [52] C. Obrecht, F. Kuznik, B. Tourancheau and J. J. Roux, “scalable lattice
    Boltzmann solvers for CUDA GPU clusters” Phys. Rev. E. 65, 259, (2013).
    [53] Y. H. Lee, L. M. Huang, Y. S. Zou, S. C. Huang and C. A. Lin, “Simulations of
    turbulent duct flow with lattice Boltzmann method on GPU cluster,” Comput.
    Fluids. 168, 14-20, (2018).
    [54] T. I. Gombosi, “Gas kinetic theory,” Cambridge University Press, (1994).
    [55] D. d‘Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo,
    “Multiple-relaxation-time lattice Boltzmann models in three dimensions.”
    Philos. Trans. R. Soc. London, Ser. A 360, 437
    [56] Z. Guo, C. Zheng and B. Shi, “Discrete lattice effects on the forcing term in
    the lattice Boltzmann method,” Comput. Fluids. 65, 046308, (2002).
    [57] G.H. Tang, X.F. Li, Y.L. He, W.Q. Tao, “Electroosmotic flow of non-
    Newtonian fluid in microchannels,” J. Non-Newton. Fluid Mech. 157 (2009)
    133–137.
    [58] C. Obrecht, F. Kuznik, B. Tourancheau and J. J. Roux, “A new approach to
    the lattice Boltzmann method for graphics processing units” Comput. Math.
    Appl. 61, 3628, (2011).
    [59] X. Wang, T. Aoki, “Multi-GPU performance of incompressible flow
    computation by lattice Boltzmann method on GPU cluster,” Parallel
    Computing 37, 521, (2011).
    [60] S. B. Pope, “Turbulent Flows,”, Cambridge University Press, Cambridge, UK,
    (2000).

    QR CODE