簡易檢索 / 詳目顯示

研究生: 陳德鴻
Chen, Te-Hung
論文名稱: 無塵服之吸濕、透濕與透氣特性對人員生理與主觀舒適性之影響
The Effect of Hygroscopicity, Moisture Transferring, and Air Permeability of Cleanroom Clothing on Physiological Responses and Subjective Comfort
指導教授: 王茂駿
Wang, Mao-Jiun J.
口試委員: 黃雪玲
紀佳芬
石裕川
林志隆
王茂駿
Sheue-Ling Hwang
Chia-Fen Chi
Yuh-Chuan Shih
Chih-Long L
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 64
中文關鍵詞: 無塵服雙層衣物穿著舒適性透氣與透濕性衣服微氣候半導體製造業
外文關鍵詞: cleanroom clothing, double-layer clothing, wear comfort, air andmoisture permeability, clothing micro-climate, semiconductor manufacturing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體作業的作業型態與人員需長時間的穿著無塵服,無塵服的透氣性與透濕性都直接影響現場作業人員的舒適性,所以在穿著無塵服時的舒適性與內層衣服機能性兩者間的協調下,就需要加以評估與分析,以期達到最佳的穿著舒適性。故本研究主要目的在探討半導體廠無塵室中無塵服的穿著對現場工作人員的生理與心理之影響。本研究共有兩個主要實驗:
    實驗一的部分乃針對穿著無塵服之透氣性和透濕性的設計,對於人員生理與心理反應之影響進行探討,共計10位受試者參與實驗,結果指出當穿著較高透氣性與較高透濕性的無塵服時,有顯著較低的皮膚溫度、微氣候溫度與微氣候濕度(P<0.01);隨著工作時間增加,微氣候溫度也會隨之增高,微氣候濕度則是剛開始會降低,然後隨著時間增加而上升;受試者主觀反應方面,也與客觀反應有著一致的結果。
    實驗二的部分則是進一步探討穿著無塵服與不同衣物特性的內層衣物下,人員穿著舒適性的影響,共計20位受試者參與實驗,每一位受試者皆穿著4種不同特性的內層衣物(包含100% 棉, 70% 棉 + 30% 聚酯纖維, 65% 聚酯纖維 + 35% 棉, 100% 聚酯纖維)來完成實驗,結果指出穿著100% 聚酯纖維的內層衣物將會顯著增加內側微氣候濕度(p < 0.01),穿著100 % 棉的內層衣物時,將顯著增加內外側微氣候濕度(p < 0.01)以及衣物的回潮率。此外,混和成分的內層衣物將有較低的內外側微氣候濕度(p < 0.05)。主觀反應方面,穿著65% 聚酯纖維 + 35% 棉混和成分的內層衣物相較穿著70% 棉 + 30% 聚酯纖維混和成分的內層衣物有較高的主觀舒適度。
    總結而言,本研究提供半導體廠在選擇與設計無塵服時有益的資訊,並且也指出內層衣物的特性 (吸濕、透濕) 與服裝舒適性有密不可分的關聯,故提出較佳的內層衣物組合,藉以增加無塵室人員穿著無塵服的舒適性。


    The function of cleanroom clothing is to protect the product from contamination by people, and to dissipate electrostatic discharge. People in the cleanroom work environment often complain about the discomforts associated with the wearing of cleanroom clothing. This study investigates the effect of wearing cleanroom clothing on physiological and subjective responses. Two experiments have been designed. The first experiment is to investigate the effect of air permeability and water vapor permeability of cleanroom clothing on subject’s physiological and subjective responses. Ten subjects participated in this study. The results indicate that skin temperature, micro-climate temperature and relative humidity were lower while wearing cleanroom clothing with high air permeability and high water vapor permeability. As the task time increased, the micro-climate temperature also increased but the micro-climate relative humidity decreased at first and then increased. In addition, the physiological responses showed significant positive correlations with the subjective perception of clothing comfort.
    The second experiment is to investigate the influence of the double-layer clothing in semiconductor manufacturing cleanroom environment. Twenty subjects participated this study. Each subject completed four treatment combinations with four different inner clothings (e.g. 100% cotton, 70% cotton + 30% polyester, 65% polyester + 35% cotton, 100% polyester). The results indicate that wearing 100% polyester inner clothing caused a significant increase in inner micro-climate relative humidity (p < 0.01). Wearing 100% cotton inner clothing caused a significant increase in both inner micro-climate relative humidity (p < 0.01), and inner clothing’s moisture absorption. Further, wearing the blending fiber inner clothing caused lower relative humidity in the inner and outer clothing micro-climate (p < 0.05). Moreover, wearing 65% polyester + 35% cotton inner clothing had higher subjective comfort than that of wearing 70% cotton + 30% polyester.
    In summary, the findings of this study provide useful information for cleanroom clothing design and selection, and the moisture absorption and water vapor transportation characteristics of the inner clothing are the major factors affecting the comfort of wearing double-layer clothing.

    摘要 I Abstract III 誌謝 V Table of Content VI Table List IX Figure List X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 The purpose and framework of this study 1 Chapter 2 Literature review 4 2.1 Ergonomics problems in semiconductor manufacturing 4 2.2 Thermal comfort 5 2.3 Human body-clothing-environment system 6 2.4 Factors affecting clothing comfort 8 2.4.1 Water vapour permeability 9 2.4.2 Air permeability 9 2.4.3 Subjective perception 10 2.5 Personal protective clothing and comfort 10 Chapter 3 Evaluation of physiological responses and wear comfort with cleanroom clothing 14 3.1 Background 14 3.2 Objective and hypotheses 15 3.3 Methods 16 3.3.1 Subjects 16 3.3.2 Experimental garments 17 3.3.3 Experiment equipment 18 3.3.4 Experimental design 21 3.3.5 Experiment measures 21 3.3.6 Experiment procedure 24 3.3.7 Statistical analysis 26 3.4 Results 27 3.4.1 Physiological responses 27 3.4.2 Clothing micro-climate RH and temperature 28 3.4.3 Subjective responses 31 3.4.4 Correlation analysis 32 3.5 Discussions 34 3.6 Summary 37 Chapter 4 Evaluation of double-layer clothing in semiconductor manufacturing environment 38 4.1 Background 38 4.2 Objective and hypotheses 39 4.3 Methods 40 4.3.1 Subjects 40 4.3.2 Experimental garments 40 4.3.3 Experiment equipment 42 4.3.4 Experimental design 42 4.3.5 Experiment procedure 44 4.3.6 Statistical analysis 45 4.4 Results 47 4.4.1 Moisture absorption 47 4.4.2 Skin temperature 47 4.4.3 Clothing micro-climate RH and temperature 48 4.4.4 Subjective response 48 4.5 Discussion 52 4.6 Summary 56 Chapter 5 Conclusion 57 References 59

    1.Ae-gyeong Oh (2008). The measurement of water vapour transfer rate through clothing system with air gap between layers. Heat Mass Transf. 44(4): 375-379.
    2.American Industrial Hygiene Association (AIHA)(1971). Ergonomic guide to association of metabolic and cardiac costs of physical work. AIHA, Ohio, USA.
    3.Blacker S.D., Carter J.M., Wilkinson D.M., Richmond V.L., Rayson M.P., & Peattie M. (2013). Physiological responses of police officers during job simulations wearing chemical, biological, radiological and nuclear personal protective equipment. Ergonomics 56(1): 137-147.
    4.Bouskill L.M., Havenith G., Kuklane K., Parsons K.C., & Withey W.R. (2002). Relationship between clothing ventilation and thermal insulation. Am. Ind. Hyg. Assoc. J. 63(3): 262-268.
    5.Cadarette B.S., Cheuvront S.N., Kolka M.A., Stephenson L.A., Montain S.J., & Sawka M.N. (2006). Intermittent microclimate cooling during exercise-heat stress in US Army chemical protective clothing. Ergonomics 49(2): 209-219.
    6.Chen T.H., Chen W. P., & Wang M.J. (2014a). The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort. J. Occup. Environ. Hyg 11(6): 366-376.
    7.Chen T.H., Fan C.F., Wang M.J., & Chiu M.C. (2007). The effects of noise intensity and frequency on physiological measures and subjective responses. The 36th International Congress and Exhibition on Noise Control Engineering, Istanbul, Turkey.
    8.Chen T.H., Fan C.F., & Wang M.J. (in press). The effects of cleanroom noise intensity and frequency on physiological measures and subjective responses. WORK: A Journal of Prevention, Assessment, and Rehabilitation.
    9.Chen T.H., Lin C.L., & Wang M.J. (2014b). The evaluation of double-layer clothing in semiconductor manufacturing environment. International Journal of Human Factors and Ergonomics in Manufacturing and Service Industries 24(2): 207-215.
    10.Chen Y.S., Fan J., & Zhang W. (2003). Clothing thermal insulation during sweating. Text Res. J. 73(2): 152-157.
    11.Chung H.C., & Wang M.J. (2002). Ergonomics interventions for wafer-handling task in semiconductor manufacturing industry. Hum. Factors Ergon. Manuf. 12(3): 297-305.
    12.Chinese National Standards (CNS) 12222-L3223 (1998). Methods of test for water vapour permeability of textiles. Bureau of Standards, Metrology & Inspection, M.O.E.A., Taipei, ROC.
    13.Chinese National Standards (CNS) 12915-L3223 (1991). Methods of test for fabrics. Bureau of Standards, Metrology & Inspection, M.O.E.A., Taipei, ROC.
    14.Chou C., Tochihara Y., & Kim T. (2008). Physiological and subjective responses to cooling devices on firefighting protective clothing. Eur. J. Appl. Physiol. 104(2): 369-374.
    15.Chou C., Umezaki S., Son S.Y., & Tochihara Y. (2009). Effects of wearing trousers or shorts under firefighting protective clothing on physiological and subjective responses. J. Hum. Environ. Syst. 12(2): 63-71.
    16.Coca A., Roberge R., Shepherd A., Powell J.B., Stull J.O., & Williams W.J. (2008). Ergonomic comparison of a chem/bio prototype firefighter ensemble and a standard ensemble. Int. J. Ind. Ergon. 104(2): 351-359.
    17.Dai X.Q., Imamura A.R., Liu G.L., & Zhou F.P. (2008). Effect of moisture transport on microclimate under T-shirts. Eur. J. Appl. Physiol. 104(2):337-340.
    18.Das A., & Ishtiaque S.M. (2004). Comfort characteristics of fabrics containing twist-less and hollow fibrous assemblies in weft, J. Text. Apparel Technol. Manag. 3(4): 1-7.
    19.Fanger P.O. (1970). Thermal comfort, McGraw-Hill, New York, NY.
    20.Fan J., & Tsang H.W.K. (2008). Effect of clothing thermal properties on the thermal comfort sensation during active sports. Text. Res. J. 78(2) 111-118.
    21.Federal Standard 209E (Fed-Std-209E) (1992). Airborne Particulate Cleanliness Classes in Cleanrooms and Clean Zones. The U.S. General Services Administration (GSA), Mount Prospect, Illinois.
    22.Gagge A.P., Stolwijk J.A.J, & Hasrdy J.D. (1967). Comfort and thermal sensations and associated physiological responses at various ambient temperatures, Environ. Res. 1(1): 1-20.
    23.Gavin T.P. (2003). Clothing and thermoregulation during exercise. Sports Med. 33(13): 941-947.
    24.Gibson P.W. (1993). Factors influencing steady-state heat and water vapor transfer measurements for clothing materials. Textl. Res. J. 63(12): 749-764.
    25.Havenith G., den Hartog E., & Martini S. (2011). Heat stress in chemical protective clothing: porosity and vapour resistance. Ergonomics 54(5): 497-507.
    26.Havenith G., & Heus R. (2004). A test battery related to ergonomics protective clothing. Appl. Ergonomics 35(1): 3-20.
    27.Havenith G., Heus R., & Lotens W.A. (1990). Clothing ventilation, vapour resistance and permeability index: changes due to posture, movement and wind. Ergonomics 33(8): 989-1005.
    28.Hayashi C., & Tokura H. (2004). The effects of two kinds of mask (with or without exhaust valve) on clothing microclimates inside the mask in participants wearing protective clothing for spraying pesticides. Int. Arch. Occup. Environ. Health 77(1): 73-78.
    29.Hirata K. (2001). Prospects of thermophysiological studies for comfortable underwear. J. Jpn. Res. Assn. Text End-Uses 42(5): 33-36.
    30.Hsu W.H., Wang M.J., & Lin C.L. (2007). Assessment of musculoskeletal discomforts by clinical examination and subjective questionnaire for semiconductor cleanroom operators. J. Ergonomic Study 9: 33-38.
    31.International Labor Organization (ILO) (1983). Encyclopedia of occupational health and safety. In: Stellman JM (ed), 4th edition. ILO, Geneva, Switzerland 2: 1698-1700.
    32.Kaciuba-Uscilko H., & Grucza R. (2001). Gender differences in thermoregulation. Curr. Opin. Clin. Nutr. Metab. Care 4(6): 533-536.
    33.Kenny G.P., & Jay O. (2007). Sex differences in postexercise esophageal and muscle tissue temperature response. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292(4): 1632-1640.
    34.Kenny G.P., Schissler A.R., Stapleton J., Piamonte, M., Binder K., Lynn A., Lan C.Q., & Hardcastle S.G. (2011). Ice cooling vest on tolerance for exercise under uncompensable heat stress. J. Occup. Environ. Hyg. 8(8): 484-491.
    35.Kim J.H., Coca A., Williams W.J., & Roberge R.J. (2011). Subjective perceptions and ergonomics evaluation of a liquid cooled garment worn under protective ensemble during an intermittent treadmill exercise. Ergonomics 54 (7): 626-635.
    36.Kothari V.K. (2000). Quality control: Fabric comfort, Kothari V.K. (Eds.)(Indian Institute of Technology, Delhi, India), 276-294.
    37.Kothari V.K. (2006). Thermo-physiological comfort characteristics and blended yarn woven fabrics. Indian. J. Fibre. Text. Res. 32(1): 177-186.
    38.Kwon J.Y., & Choi J. (2013). Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions. J. Physiol. Anthropol. 32:11.
    39.Lin C.L., Chen F.S., Twu L.J., & Wang M.J.J. (2012). Improving SEM inspection performance in semiconductor manufacturing industry. Human Factors and Ergonomics in Manufacturing & Service Industries, 24(1): 124-129.
    40.Lotens W.A. (1993). Heat transfer from humans wearing clothing. Soesterberg, Technical University of Delft.
    41.Malcolm S., Armstrong R., Michaliades M., & Green R. (2000). A thermal assessment of army wet weather jackets. Int. J. Ind. Ergonomics 26(3): 417-424.
    42.Marszaek A., Smolander J., Soltyñski K., and Sobolewski A. (1999). Physiological strain of wearing aluminized protective clothing at rest in young, middle-aged and older men. Int. J. Ind. Ergonomics 25(2): 195-202.
    43.McArdle W.D., Katch F.I., & Katch V.L. (2007). Exercise physiology energy, nutrition & human performance. Philadelphia, Baltimore, New York, London, Lippincott Williams & Wilkins.
    44.McLellan T.M. (1998). Sex-related differences in thermoregulatory responses while wearing protective clothing. Eur. J. Appl. Physiol. Occup. Physiol. 78(1): 28-37.
    45.Meinander H., Anttonen H., Bartels V., Holmér I., Reinertsen R.E., Soltynski K., & Varieras S. (2004). Manikin measurements versus wear trials of cold protective clothing (Subzero project). Eur. J. Appl. Physiol. 92(6): 619-621.
    46.Milenković L., Škundrić P., Sokolović R., & Nikolić T. (1999). Comfort properties of defense protective clothings. Working and Living Environment Protection 1(4): 101-106.
    47.Nayak R.K., Punj S.K., & Chatterjee K.N. (2009). Comfort properties of suiting fabrics. Indian J. Fiber Text. Res. 34(2): 122-128.
    48.Oglakcioglu N., & Marmarali A. (2007). Thermal comfort properties of some knitted structures. Fibres & Textiles in Eastern Europe 64(5): 94-96.
    49.Pocekay D., McCurdy S.A., Samuels S.J., Hammond K., & Schenker M.B. (1995). A cross-sectional study of musculoskeletal symptoms and risk factors in semiconductor workers. Am. J. Ind. Med. 28(6):861-871.
    50.Parsons K.C., Havenith,G., Holmér I., Nilsson H., & Malchaire J. (1999). The effects of wind and human movement on the heat and vapour transfer properties of clothing. Ann. Occup. Hyg. 43(5): 347-52.
    51.Petrulytė S., & Baltakytė R. (2008). An investigation into air permeability of terry fabrics regarding the pricesses of finishing. Tekstil 57 (1-2): 15-19.
    52.Pollock M.L, Gaesser G.A., Butcher J.D., Despres J., Dishman R.K., Franklin B.A., & Garber C.E. (1998). American college of sports medicine position stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in adults, Med. Sci. Sports Exerc. 30(6): 975- 991.
    53.Satsumoto Y., Murayama C., & Takeuchi M. (2009). Effect of moisture sorption of underwear material on clothing microclimate in a hot environment. Heat Tran. Asian Res. 38(1):1-14.
    54.Semiconductor Equipment and Materials International (SEMI) (1996). S8-Safety guidelines for ergonomic / human factors engineering of semiconductor manufacturing equipment.
    55.Skenderi Z., Čubrić I. S., & Srdjak M. (2009). Water vapour resistance of knitted fabrics under environmental conditions. Fibres Text. East. Eur. 73(2): 72-75.
    56.Skurvydas A., Kamandulis S., Stanislovaitis A., Streckis V., Mamkus G., & Drazdauskas A. (2008). Leg immersion in warm water, stretch-shortening exercise, and exercise-induced muscle damage. J. Athl. Train. 43(6): 592-599.
    57.Slater K. (1999). Progress in textile: science and technology, testing and quality management, Kothari V.K. (Eds.) (Indian Institute of Technology, Delhi, India), 360-385.
    58.Smith D.L., Fehling P.C., Hultquist E.M., Lefferts W.K., Barr D.A., Storer, T.W., & Cooper, C.B. (2012). Firefighter's personal protective equipment and the chronotropic index. Ergonomics 55(10): 1243-1251.
    59.Smith D.L., Haller J.M., Hultquist E.M., Lefferts W.K., & Fehling P.C. (2013). Effect of clothing layers in combination with firefighting personal protective clothing on physiological and perceptual responses to intermittent work and on materials performance test results. J. Occup. Environ. Hyg. 10(5): 259-269.
    60.Turpin-Legendre E., & Meyer J.P. (2007). Comparison of physiological and subjective strains of two protective coveralls in two short physically simulated demanding tasks. Appl. Ergonomics 38(2): 249-252.
    61.Umbach K.H. (1993). Aspects of clothing physiology in the development of sportswear, Knitting Technique 15(3): 165-169.
    62.Wald P.H., & Jones J.R. (1987). Semiconductor Manufacturing: An Introduction to Processes and Hazards, Am. J. Ind. Med. 11(2): 203-221.
    63.Wang F.J., Zheng Y.R., Lai C.M., & Chiang C.M. (2008). Evaluation of thermal comfort and contamination control for cleanroom. J. Appl. Sci. 8(9): 1684-1691.
    64.Wang F., Zhou X., & Wang S. (2009). Development processes and property measurement of moisture absorption and quick dry fabrics. Fibres Text. East. Eur. 73(2): 46-49.
    65.Wang M.J.J., Chung H.C., & Wu H.C. (2004). Evaluating the 300mm wafer-handling task in semiconductor industry. Int. J. Ind. Ergon. 34: 459-466.
    66.Wang M.J.J., & Huang C.L. (2004). Evaluating the eye fatigue problem in wafer inspection. IEEE Transactions on Semiconductor Manufacturing 17(3): 444-447.
    67.Wickwire J.M., Bishop P.A., Green J.M., Richardson M.T., Lomax R.G., Casaru C., Curther-Smithb M., & Doss B. (2007). Physiological and comfort effects of commercial “wicking” clothing under a bulletproof vest. Int. J. Ind. Ergon. 37(7): 643-651.
    68.Williams M.E., & Murphy P.L. (1995). Semiconductor industrial hygiene handbook, Noyes Publications, Park Ridge, New Jersey, U.S.A.
    69.Wu H.Y., Zhang W., & Li J. (2009). Study on improving the thermal-wet comfort of clothing during exercise with an assembly of fabrics. Fibres Text. East. Eur. 75(4): 46 -51.
    70.Yeow P.H.P., & Sen R.N. (2003). Quality, productivity, occupational health and safety and cost effectiveness of ergonomic improvements in the test workstations of an electronic factory. Int. J. Ind. Ergon. 32(3):147-163.
    71.Yi E., Kim Y.P., & Park J.H. (2007). Comfort properties of T-shirts dyed with natural persimmon juice. J. Text. Inst. 98(3): 195-200.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE