簡易檢索 / 詳目顯示

研究生: 鄭為
Cheng, Wei
論文名稱: 以貝氏方法進行比較試驗中的子集選取
A Bayesian Approach to Subset Selection in Comparative Selection Trials
指導教授: 許文郁
Shu, Wun Yi
口試委員: 洪慧念
陳鄰安
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 逐次選取beta分配NDD程序成本函數最佳化設定值
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在新藥開發的臨床試驗中,會將受試的病人分成控制組(control group)和實驗組(treatment group),給予控制組的服用舊藥或安慰劑、實驗組的服用欲開發之新藥,透過分析決定是否讓新藥上市。除了選出藥效最佳的藥外,如何控制實驗成本亦是科學家所關心的。因此,Cheng-Shiun Leu與Bruce Levin針對第二期的臨床試驗,提出了一個選取藥物的實驗程序,稱為adaptive design in phase-II clinical trials。這些研究主要是適用於服藥結果只有治療成功或失敗的藥物,但對於高血壓、高膽固醇等疾病的患者而言,其服藥反應為連續型變數。所以本文提出適用於服藥反應為常態分配下的選藥程序,無調適NDD和調適NDD,並以貝氏觀點建構成本函數為指標。利用R軟體以蒙地卡羅法進行模擬,探討在不同數量組合的新舊藥和先驗分配下,如何設定檢定的顯著水準和最多受試者人數,才能以最低的成本選出藥效最佳的藥。證實了在藥效參數服從beta分配且服藥反應為常態時,使用調適NDD較無調適NDD佳,並且找出了最佳化設定。


    In the clinical trials of new drug development, patients will be divided into control group and treatment group. Let patients in control groups take old drugs or placebos and those in treatment group take new drugs. Scientists will determine whether the efficacy of new drugs are truly better through analysis. Besides selecting the drugs with best efficacy, scientists also care about controlling the experimental cost. Therefore, Cheng-Shiun Leu and Bruce Levin have designed a procedure for selecting drugs in phase-II clinical trials, which is called adaptive design in phase-II clinical trials. These researches mainly focus on the drugs whose responses are only success or failure. However, to patients with hypertension and hypercholesterolemia, their responses of taking medicine are continuous variables. In this thesis, we provide sequential procedures (non-adaptive NDD and adaptive NDD) for drugs with Normal distributed responses and define a cost function as criteria based on Bayesian. Through R language and Monte Carlo method, we study how to set the significance level and the largest number of patients to select the drugs with best efficacy using minimum costs. Finally, we verify that the adaptive NDD is better than non-adaptive NDD and solve the optimizations.

    第一章 緒論 1 1.1 研究動機與背景 1 1.2 文獻回顧 2 1.3 研究架構 2 第二章 問題模式與研究方法 3 2.1 Bernoulli分配下選取藥物的程序 3 2.2 常態反應下選取藥物的程序 6 2.3 控制組和實驗組 10 2.3.1 Bernoulli分配下的方法 10 2.3.2 常態分配下的方法 11 第三章 如何衡量選藥程序 13 3.1 選藥結果的分級 13 3.2 成本函數 16 3.2.1 定義 17 3.2.2 常數 的選取和討論 18 第四章 模擬與討論 19 4.1 (α,N*)範圍的選取流程 19 4.2 無調適NDD和調適NDD的比較 20 4.2.1 (k0,k1,r) = (2,2,2) 21 4.2.2 (k0,k1,r) = (2,3,2) 21 4.2.3 (k0,k1,r) = (3,2,2) 22 4.2.4 (k0,k1,r) = (2,3,3) 23 4.2.5 比較與分析 23 4.3. 找出最佳化設定 28 4.3.1 (k0,k1,r) = (2,2,2) 29 4.3.2 (k0,k1,r) = (2,3,2) 30 4.3.3 (k0,k1,r) = (3,2,2) 31 4.3.4 (k0,k1,r) = (2,3,3) 32 第五章 結論和未來研究 33 附錄 34 參考文獻 71

    [1] Cheung, K. (2008). ‘Simple sequential boundaries for treatment selection in
    multi-armed randomized clinical trials with a control’. Biometrics. 64, 940-949.
    [2] Leu, C.S. and Levin, B. (1999a). ‘Proof of a lower bound formula for the expected
    reward in the Levin-Robbins sequential elimination procedure’. Sequential Analysis.
    18, 81-105.
    [3] Leu, C.S. and Levin, B. (1999b). ‘On the probability of correct selection in the
    Levin-Robbins sequential elimination procedure’. Statistica Sinica. 9, 879-891.
    [4] Leu, C.S. and Levin, B. (2004). ‘Selecting the best subset of b out of c coins with the
    Levin-Robbins sequential elimination procedure: Proof of the lower bound formula for
    the probability of correct selection in the case b = 2, c = 4’. Technical Report #B-91,
    Department of Biostatistics, Columbia University.
    [5] Leu, C.S. and Levin, B. (2008). ‘A generalization of the Levin-Robbins procedure for
    binomial subset selection and recruitment problems’. Statistica Sinica. 18, 203-218.
    [6] Leu, C.S. and Levin, B. (2013). ‘On two lemmas used to establish a key inequality that
    implies the lower bound formula for the probability of correct selection in the
    Levin-Robbins-Leu family of sequential binomial subset selection procedures’. Technical
    Report #B-148, Department of Biostatistics, Columbia University.
    [7] Leu, C.S., Cheung, K., and Levin, B. (2011). ‘Subset selection in comparative
    selection trials’. In: Bhattacharjee, M., Dhar, S.K., and Subramanian, S. (eds.) Recent
    Advances in Biostatistics: False Discovery, Survival Analysis, and Other Topics.
    Series in Biostatistics, 4, 271-288..
    [8] Levin, B. and Robbins, H. (1981). ‘Selecting the highest probability in binomial or
    multinomial trials’. Proc. Natl. Acad. Sci. USA. 78, 4663-4666.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE